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In this paper we consider an exactly solvable model that displays glassy behavior at zero temperature due to
entropic barriers. The new ingredient of the model is the existence of different energy scales or modes
associated with different relaxational time scales. Low-temperature relaxation takes place by partial equilibra-
tion of successive lower-energy modes. An adiabatic scaling solution, defined in terms of a threshold energy
scalee*, is proposed. For such a solution, modes with enetgy* are equilibrated at the bath temperature,
modes withe<e* remain out of equilibrium, and relaxation occurs in the neighborhood of the threghold
~€*. The model is presented as a toy example to investigate the conditions related to the existence of an
effective temperature in glassy systems and its possible dependence on the energy sector is probed by the
corresponding observable.
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[. INTRODUCTION havior of the liquid as the superposition of different and in-
dependent harmonic modes. Each of these energy modes cor-
The study of exactly solvable models has always been aresponds to a normal mode of a system and describes a
active area of research in the field of statistical physics. Thegollective oscillation ofN atoms around their local minima.
help us to grasp the general principles governing the physicalhis is the harmonic approximation that is known to work
behavior of realistic systems, which, due to the complicateduite well in liquids. Nevertheless, already as the tempera-
interactions among the different constituents, cannot be praure goes below aritical temperaturd (the transition tem-
dicted using standard perturbative techniques. Glasses, fferature predicted by the mode-coupling thef8y) other
general, are systems falling into this category. The slow reggjlective modes different from that of the standard vibra-
laxation of glasses observed in the laboratory is a consejonal ones become important. The nature of these modes is
quence of the simultaneous interplay of its constituentsqite different from the usual harmonic normal modes be-
Wh|ch yields a very complex and rich phenomen_ology. cause they do not represent oscillations around a given con-
Itis well k’?OV_V” that glagses_fall out of equmbrlum_when figuration within a metastable well but transitions among dif-
the characteristic observation time is larger than their relaxf?rent wells. These modes are reminiscent of some type of

ation time. Because the relaxation time is strongly der)ender?nstanton solutions recently computed in the framework of

on temperature, it turns out that glasses are immediately out

of equilibrium as soon as the temperature is few degree§.ome spin glass modeﬂé,_]. Below T, relax_atlonal dynam_-_
below the glass transition. Well below the glass transition®S proceeds- by activation over the *?a”'?rs characterizing
temperatureT, no time evolution is apparently observed in these collective modes. Now, the main difference between

the glass and one is tempted to conclude that the glass is inta€S€ collective modes and the usual harmonic modes relies
stationary state. Nothing more far from the truth. Glasses stilPn how they relax to equilibrium when put in contact with a
relax but slow enough for any change to be observable ithermal bath at temperatufie Relaxation to equilibrium is
laboratory time scales. Old experiments on polymers revedletermined by the height of the energy barriers separating
that the slowly relaxing state corresponds to an aging statéifferent modes. Suppose a given normal mode has fre-
[1]. That is, if the system is perturbed while being in its quencywy and energye,« wﬁ. The relaxation time for each
aging state, then the characteristic time associated with thef these modes is typically of ordef~expE,/kgT). There-
response of the system scales with the age of the sy$tem fore, as the energl, becomes lower than the thermal bath
the time elapsed since it was quenchédother way to look  temperature this mode rapidly equilibrates. On the contrary,
at this aging phenomena is to evaluate the time autocorrelaf E,>kgT, this mode remains frozen. Collective modes are
tion function. It is observed that the typical decorrelationdifferent. As the reference energy of the collective modes
time scales with the age of the systé#. depletes, the typical barrier separating these modes increases
A simple scenario to explain these results is the following.leading to the contrary behavior and to superactivation ef-
Consider a liquid well abovd § where correlations decay fects. While high-energy collective modes are separated by
exponentially with time. One may consider the resultant befow barriers, low-energy collective modes are separated by
high barriers. A simple schematic representation of this sce-
nario in a one-dimensional configurational space is shown in
*Email address: leuzzi@wins.uva.nl Fig. 1. This behavior is common to the majority of exactly
"Email address: ritort@ffn.ub.es solvable glassy model$5-7,18, phenomenological trap
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cent literature about glassy dynamdst—20. T« is an ef-
fective time-dependent parameter describing equilibrium
fluctuations for those thermalized modes witk> €e*
=kgTer. While a thermometer coupled to the fast modes is
expected to measure the bath temperature, a thermometer
coupled to the slower ones should yield the effective tem-
perature. Hence, the effective temperature corresponds to an
energy threshold that separates collective modes which are
frozen from those which have relaxed to the bath tempera-
L Lo Lo z L L ture. Relaxation, then, takes place at energy scales in the
Vo Lo neighborhood of the threshold valu&. For real systems,
Lo Lo Vo Lo Lo this energy threshold is related to the typical volume of the
L / / L VY Iy drop that is able to release strain energy during its relaxation
' - to equilibrium. A scenario on this type of physical mecha-
nism for glassy relaxation has recently been introduced in
Ref.[21] where this threshold energyf has been related to
FIG. 1. A one-dimensional example of an energy landscape othe size of the cooperative region as an explanation of the
collective modes: high-energy collective modes are separated bfyagility and superactivation anomalies in real glasses.
low barriers while low-energy collective modes are separated by The existence on an effective temperature is tightly re-
high barriers. lated to the validity of some approximations used in the con-
text of slowly relaxing systems such as the adiabatic approxi-
models[8], and kinetically constrained mode€[8] to cite a  mation. Within the adiabatic approximation one obtains a
few. Markovian description for the dynamics. Again, this Mar-
In what follows we will use the generic worthodeto  kovian description encodes within a single paramétee
refer to this kind of collective excitation. Let us label the effective temperatujeall the complicated past of the system.
modes with the integer variable and let us denote their The adiabatic approximation has been shown to give the cor-
energy bye, . Let us suppose that the energy levels are orrect asymptotic dynamical behavior in some simple models
dered from lower to higher energies according to the label of glasses such as the backgammon mé2a2J23 while for
It is natural to assume that there is a characteristic mdde the majority of the other most famous models in the litera-
with associated energg”* such that, all modes wite,>€*  ture (for instance thep-spin model[5]) the implementation
have already relaxed, while in the other limé,<e*, all  of such approximation is generally not yet known. Quite
modes are frozen. If the system is quenched well belgw probably, a Markovian description for glassy dynamics is
then equilibration cannot be achieved in laboratory timeunrealistic and the original idea of experimentalig2d] to
scales, this means that all modes beletv remain frozen encode the dynamical behavior into effective parameters
while modes above™* remain equilibrated at the bath tem- such as the effective pressure or the effectelse said fic-
perature. The energy threshaitl decays with time because, tive) temperature could be the only labels without a deep
as time goes by, higher barriers are accessible to the systeghysical meaning.
The resulting scenario is that of a liquid where collective These ideas have been contrasted in several exactly solv-
modes above™* are in some sort dbcal equilibriumat the  able models. All these models have the advantage of being
temperature of the baffi while modes belowe* are frozen. mean field, hence dynamical equations can be closed in one
This scenario, as it stands, is too naive because it is based @n another way. Still, the mean-field character of these mod-
the assumption that there are no dynamical correlations bels does not generally allow to investigate in a simple way
tween the different modes, i.e., the high-energy modes do nahe relaxational properties of the different modes of the spec-
influence the low-energy modes. While this is true in thetrum. In general, the dynamics of all these models has been
equilibrium state it may not be valithnd indeed it is ngt  studied by addressing the closure of the dynamics associated
when any type of local dynamics induces correlations bewith the global quantitiegsuch as the energy or correlation-
tween different modes. Still it is interesting to investigate inresponse functionghat do not discern the contribution to the
which conditions such a description turns out to be correctglobal relaxation of the different energy modes. Examples of
Examples where this type of description holds are mean fielthese models are thg-spin model[5,10,13,16, the back-
models[5,10-13. By mean-field we mean those models gammon[20,22,23,25 the harmonic oscillator, and other
where there is no spatial dimensionality associated with thepherical spin modelg7,16—1§. The question of the exis-
set of interactions. In these cases, different modes are neé¢nce of an effective temperature is also tightly related to the
related to different length scales. Therefore local dynamicaparticular way in which the fluctuation-dissipation theorem
rules do not necessarily induce correlations between the difDT) is violated[13,26,27. The question whether there ex-
ferent modes. Generally speaking, the identification of thidsts a single effective temperature describing the violation of
energy scale remains an open problem for which we do ndEDT is still controversial(see, for instance, Ref28]). We
have yet a complete understanding. believe that this and other related questions can be better
This energy scale™ is related to what has received the addressed, even at the level of mean-field models, by analyz-
name of effective or fictive temperatulig¢ in the most re-  ing the contribution of all different modes. The analysis of

{configuration space}
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the harmonic vibrational modes in glasses is already an in=min[1,exp(- BAE)] where AE=¢€,6, o~ €qdy, 1. Note

teresting step in this directidi29] although here we have in that the departure box satisfies=1 and departure boxes
mind other type of collective modes. are chosen with probabilithy/N. This dynamics corre-

The purpose of this paper is the study of a model wheregponds to the Maxwell statistics where the particles are dis-
the dynamical relaxation of the different energy modes caninguishable and differs from the one corresponding to the
be made explicitly clear. This model is what we refer to asBose statistic§31,23,32,2) where the particles are indistin-
the disordered backgammon modBIBG mode) and con-  guishable and arrival boxes are chosen with uniform prob-
sists in a generalization of the backgammon model to allovapility 1/N.
different energies for different boxes. Again, just like its pre-  |n the dynamics the total number of particles is conserved
decessor, the slow relaxation of this model is due to entropigo that the occupancies satisfy the closure condition
barriers. For the DBG model we show the existence of an N
energy threshold* (t) that separates the equilibrated modes E _
from the nonequilibrated modes. The DBG mo@eith its ny
associated threshole* (t)] provides a microscopic realiza-
tion that is reminiscent of some phenomenological models Now we want to show that the interesting case corre-
proposed in the past such as the trap model in a tree consigponds to the situation whegge) is only defined fore=0.
ered by Bouchaud and Def80]. The advantage in the DBG In this case, the dynamics turns out to be extremely slow at
model is that now one can exhaustively investigate the distow temperatures, similarly to what happens for the original
tinct relaxation of each of the different energy modes verify-BG model. The difference lies in the type of ground state.
ing whether the scenario of the effective temperature preThe ground state of E¢l) corresponds to the case where alll
sented before holds. This will help to better understand thgarticles occupy a single box, the one with the smallest value
meaning of the effective temperature and its relation with thedf €. Let us denote bye, this smallest value. Then the
violation fluctuation-dissipation theorem. ground state energy is given by the relatidb;s=

In Sec. Il we introduce the DBG model. Its thermody- — =) €, + €,. Since all thee are positive no other configu-
namic properties are reported in Sec. Ill, where the specialation can have a lower energy.df¢) is a continuous dis-
case of very low temperatures is explicitly worked out. Intribution the ground state is also unique. Now it is easy to
Sec. IV we present the dynamical equations whose solutiongnderstand that, during the dynamical evolution at zero tem-
are found within an adiabatic approximation in Sec. V. Thereperature, all boxes with high values ebecome empty quite
the features of such an approximation are carefully analyzedoon and the dynamics involves boxes with progressively
In Sec. VI numerical results are presented for two specifidower values ofe. The asymptotic dynamics is then deter-
models belonging to the family of DBG models. Finally, in mined by the behavior of the distributiay(e) in the limit
Sec. VII, a method is introduced in order to estimate thee—0. If g(e)~e%, for e—0, we will show that the
threshold energy scale* directly from the dynamics. In asymptotic long-time properties only depend@nNote that
Sec. VIII we present our conclusions. Some technical issuethe normalization of thej(e) imposesa> — 1. This classi-

)

are presented in four different appendixes. fication includes also the original BG model where there is
no disorder at all. In that cagf{e€) = 6(e— 1) so the distri-
Il. THE DISORDERED BACKGAMMON MODEL bution has a finite gap a=0. The behavior corresponding

to this singular energy distribution can be obtained from the
previous one in the limiting case— .

Let us takeN particles that can occupy boxes, each one One important aspect of the mod@) is that, in the pres-
labeled by an index that runs from 1 taN. Suppose now ence of disorder, it is not invariant under an arbitrary con-
that all particles are distributed among the boxes. A giverstant shift of the energy levels. Actually, by changiag
box r contributes to the Hamiltonian with an energye,  — ¢/ =¢,+c with c=0, the model turns out to be a combi-
only when it is empty. In this case the total Hamiltonian of nation of the original model and the classical BG model.

A. Definition of the model

the system reads After shifting, the new distributiog(e’ —c) has a finite gap
N (equal toc plus the gap of the original distributipriThe new
He— z e s (1) model corresponds again to the—o« case and the

=y o0 asymptotic dynamical behavior coincides with that of the

standard BG model. As we will see later, the present model is
whereé is the Kronecker delta angj denotes the occupancy characterized by an energy thresheft that drives the re-
or number of particles in box The e, are quenched random laxation to the stationary state. Only when the energy thresh-
variables extracted from a distributi@{e) that we assume old can go to zero we have a different asymptotic behavior.
to be defined only fotre=0. The interest of this definition For all models with a finite gapg* cannot be smaller than
will be discussed below. Like in the original backgammonthe gap, hence asymptotically sticks to the gap and the relax-
(BG) model[6] we consider Monte Carlo mean-field dynam- ational behavior of the DBG model with a finite gap corre-
ics where a particle is randomly chosen in a departure bosponds to that of the standard BG model.
and a move to an arrival baxis proposed. Id denotes the One of the outstanding features of this model is that a
departure box, the proposed change is accepted accordini@scription of the dynamics in the framework of an adiabatic
to the Metropolis rule with probability W(AE) approximation turns out to be totally independent from the
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type of distributiong(€) (and hence ofx) despite the fact N NI N N

that the asymptotic long-time behavior of the effective tem- Ze= 2, ot exg B & On, 0| 0N, n» (10
perature and of the internal energy depends on the value n=0 1 r=1 =1

of a.

whereg; ; is the Kronecker delta. Introducing this expression
in Eq. (9) we can writeZ5¢ as an unrestricted sum for all the
occupancies, ,

Like in the original BG model we define the occupation
probabilities,P,, that a box containk particle, N on

Zgc=N! 2 H —exp(ﬁe 8n 0)- (11)

=0r=1

B. Observables

1 N
Pi=y 2 On, K ()
r=1 The factorN!/II,n,! in the partition functionZ; is intro-
) - duced to account for the distinguishability of particles. This
and the corresponding densities that a box of energgn-  t4ctor leads to an overextensive entrdpg., the Gibbs para-
tainsk particles dox) that can be cured eliminating frofigc the overcount-
ing termN! in the numerator. The final result is

1
€)=y 2 de—€)dy k. k=0, (@) N TE o
r=1 r z
Zsc exr{E In| > —,exp(/serﬁn,a“, (12)
r=1 n=o0 N
1 N
9(e)=y Z o€ —e). (5 yielding the grand-canonical potential energy per box
The P, and theg, are related by G=F—pu= _Tln(ZTGC)
P :jw de, k=0, 6 !
“Jo 9(e)de © =—TZ In[exp(Be,) +expz)—1]
r=1

and the conservation of particles reads

)

gopk=1, E gle)=——"— 9te) =g(e). (7)

= J g(e)de whereF is the Helmholtz free energy per box. The fugaaty
is determined by the conservation conditi@ that reads

= —TJ?g(e)ln[exp(ﬂe) +exp(z)—1]de, (13

The energy can be expressed in terms of the degg(ty) as ﬁ —_1 or, equivalently, fZO, (14
g au
B fo de ego(e). (8) yielding the closure condition
This set of observables depends on time through the time J“ g(e) de= (15)
evolution of the occupancias of all boxes. In the following o exp(Be)+expz)—1 zexpz)’
section we analyze the main equilibrium properties of the
model. This equation gives the fugacityas function of3 and, from
Eqg. (13) and its derivatives, the whole thermodynamics. In
IIl. EQUILIBRIUM BEHAVIOR particular, the equilibrium expressions fog(e) are
The solution of the thermodynamics proceeds similarly as Z“g(e)exp(Bedy o)

for the case of the original BG model. The partition function grle)= Ki[expl Be) +exp(z’) =y (16)
can be computed in the grand partition ensemble. It reads '

" the corresponding, being given by Eq(6), which together

Zao= E Zo(N)ZY, ) with the closure relatioril5), leads to the expression
peas g 1o SPDL) g s T

wherez=exp(Bu) is the fugacity, is the chemical poten- k™ %0l =7 "7 exp(z) (1= Aol exp(z) (17

tial, and Z-(N) stands for the canonical partition function of
a system withN particles. The canonical partition function Starting from Eq.(8) the equilibrium energy density is ob-
can be written as tained as
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S eg(e)ex Be)
0

expBe)+expz)—1°

(18)

All these expressions can be evaluated at finite temperature

Note that, although the values & in Eq. (17) are inde-
pendent of the disorder distributiag(e), they directly de-
pend on that distribution through the equilibrium valuezof
[which obviously depends on tlyg €) ]. Of particular interest
for the dynamical behavior of the model are the low-
temperature properties that we analyze below.

Thermodynamics at low temperatures

A perturbative expansion can be carried out closel to
—0 to find the leading behavior of different thermodynamic
guantities. Let us start analyzing the closure conditit®).
Doing the transformatior’ = B¢, Eq. (15) can be rewritten
as

!
0

In the limit T— 0 the fugacityz depends on the behavior of
g(Te') in the limit T=0, i.e., on the behavior of(e) for
e—0. Assumingg(e)~ €“ for e<1 we define the function
h(e) through the relatiorg(e)=€e“h(e), whereh(e) is a
smooth function ofe with h(0) finite. The integral can be
expanded around=0 by taking successive derivatives of
the functionh,

g(Te')
expe')+expz)—1

1
de' = Zexp2)’ (19

6/&’

]

z exp(z)T““f

0 expe’ +expz)—1

h((0)(Tek

o de’'=1. (20)

x>
k=0

Using the asymptotic resuit—o, whenT—0, everything
reduces to estimate the following integral in the lazdinit:

|

The termk=0 in the series yields the leading behavior for
which turns out to be

Xa+k

Xexr(x)+exﬂz)—1

~z¢ K lexp(—2). (21

Zwﬁ(a+l)/(a+2). (22)
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FIG. 2. Left, energy dependence on temperature at equilibrium
for two DBG models, withao=1 anda=0. Also the energy for the
standard BG modeld— ) is plotted. Right, specific heat for the
same models. For all casédisordered or notit turns out to be
finite at T=0.

dicted in Eq.(23). It yields, therefore, a finite specific heat as
corresponds to a classical model with Maxwell-Boltzmann
statistics(see Fig. 2

IV. DYNAMICAL EQUATIONS

Here we consider the dynamical equations for the occu-

In a similar way the energy can be computed to leading ordepation probabilitiesP, and their associated densitigg(e).

inT,

E=EgstaT+0(T?), (23

The dynamical equations in this model are derived in a simi-
lar way as for the standard BG model. The main difference is
that in the DBG the equations for the occupancies probabili-

giving a finite specific heat at low temperatures. In Sec. Vlties P, do not generate a closed hierarchy of equations. Only

we will show explicitly such a behavior for two specific
DBG models, one withe=1 [defined in Eq.(48), Sec. VI
and the other witlw=0 [Eq. (49), Sec. VI. Solving Eq.(15)
numerically forz(T) in each specific model and inserting
z(T) in the expressiorni18) for the equilibrium energy den-

for T=0 such a closed hierarchy is obtained. As we will see
later, this has important consequences when we become in-
terested in the zero-temperature relaxation.

A hierarchy of equations can only be obtained at the level
of the occupation probability densitigg(€). A detailed deri-

sity, we get the energy dependence on the temperature. In alation of these equations is reported in Appendix A. Here we

cases, at equilibrium, the energy is linear for Idwas pre-

show the final result,
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o ) and e, depend on the precise values of these energies only
1+f de'go(e')(e Al _6)—1)}—90(6) when the departure box contains a single particle and the
¢ arrival box is empty. But such a move does not lead to any
change in any of th®, , hence dynamical equations for the
e PerPy(1-e P9 P, remain independent @f( €). Obviously this does not hold
for other observables such as the eneBji.e., the mean
€ , value of e over the densitygy(€)] and higher moments of
+f de’gl(e’)(e_ﬁ(f_f)—l)}, k=0, (249  ge).
0 This observation is crucial, since we look at the glassy

d9o(€)
ot

=01(e€)

X

o behavior aff =0. It turns out that the analysis of the dynami-
1+f dego(e)e Pe— Po) —gi(e) cal equations for the DBG af=0 decomposes into two
0 parts. On one hand, the equations for #ygcoincide with

those of the original nondisordered BG model, while on the

+go(€) other hand, in order to analyze the behavior of the energy
one must analyze the behavior of the hierarchy of equations

. for the gy (€), which is quite complicated. In the following

e Bey Pl(l—e’ﬁE)Jrf de'gq(€') section we will see how the analysis of these equations can

0 be done within the framework of a generalized adiabatic ap-
proximation.

9(e)
1 —20,(0)

X 2+f de’'go(e') (e Al 9 —1)

X

x(elﬂff’)—l)}, k=1, (25)
V. THE ADIABATIC APPROXIMATION

dgx(€)
o

A. Standard adiabatic solution for the P,

(k+1)gx+1(€)

1+f dfgo(ﬁ)eiﬂe_ Po)
0 In this section we are interested in the solution of the

" dynamical equations a&t=0. We already saw that the Eqgs.
f dego(e)e Pe— PO” (28) for the P, coincides with those of the original nondis-
0 ordered BG model. Consequently, the same adiabatic ap-
(26) proximation used for th®, in the original BG model is still
valid for the DBG. Let us remind the main resul2,23.

The equations for th®, are directly obtained by integrating The key idea behind that approximation is that, wtig

_gk(E) 1+k+k

+gk—l(6)! k>1

the g, (€) according to Eq(6). The result is constitutes a slow mode, the othBy with k>0 are fast
modes. Hence they can be considered as if they were in

dPy(t) equilibrium at the hypersurface in phase spaé®
gi (kK DIPir () = P(t) ]+ Py—y = constant, this constant being given by the actual value of

Pg at timet. In the original BG modeP,= —E, hence ther-

. e . malization of the fast modeB,(k>0) occurs on the hyper-
* J; dego(e)e Po |[dk1= dio=kPi(t) surface of constant energy. For the DBG model this is not
true, the hypersurface where equilibration of fast modes oc-
+(K+1)Pya(t)], (27)  curs does not coincide with the constant energy hypersurface

_ ) o simply because the energy aig are different quantities.
with P_,=0. It is easy to check that the equilibrium solu- |ndeed, we will see later that their leading time behavior is
tions (16) are indeed stationary solutions. As previously said gifferent.
for generalB, the equations for thé, do not generate a At T=0 the equation foP, [Eq. (28) for k=0] reads
hierarchy by themselves but depend ondhée) through the
distribution go(€) in Eq. (27). Nevertheless, a remarkable 0
aspect is that they generate a well defined hierarchy at ot P1(1—Py). (29)
=0, which coincides with the equations of the original BG

model[25]. These are If local equilibrium is reached on the hypersurface of con-
dPy(1) stantP, we can relatd®; to Py using Eqs(17). The simplest
K =(K+1)[Pys1(1) = P () ]+ Py_; way of dealing with Eq(29} is to relate bottP; and P, to
dt the time-dependent fugacig* writing down a dynamical

: . : L
— Pl 81— co— KPW(t) + (k+ 1)Ps1(D)]. equation forz*. Using Eq.(17) this yields

(28 iz Z*[exp(z*)—1]
It is easy to understand why &it=0 the dynamical equa- at  exp(z*)[expz*)—z*—1]
tions are independent of the density of stajés). The rea-

soning is as follows. Fof=0, all moves of particles be- In the large time limit z* diverges and the leading
tween departure and arrival boxes with different energies asymptotic behavior is given &* =In(t)+In[In(t)]. The oc-

(30)
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cupation probabilities are, then, given by the relatighd  The mechanism of relaxation is the one we reminded in the
replacingz by the time-dependent fugacig*, as long as Introduction when speaking about the behavior of collective

z*>1, modes. At zero temperature there is no thermal activation
and the equilibrated modes are in the seetore* while the
1 (zF)k1 nonequilibrated modes are in the other seatgte*. The

Py=0dko| 1— > +(1- 5k,0)—k| —— (1) value ofe* can be easily guessed. After quenching to zero

temperature the system starts to relax to its ground state.
Hence, according to Eq22), the inverse effective tem- Because there is no thermal activation, relaxation is driven

perature is given by the relation by entropic barrigrs, i.e., flat direptions in conf_igurationgl
space through which the system diffuses. Entropic relaxation
Bes~ (2%) @+ D@t D) _[|n(t)](@+2)/(ar1) (32 is energy costless, so its rate is determined by the number of

available configurations with energy smaller than or equal to
and the effective temperature depends on the properties tifie actual energy. A simple microcanonical argument giving
the disorder distributiomy(¢€) in the limit e—0 through the the relaxation rate goes as follows. Let us denotdvbthe
value of the exponent. Clearly, when the density of levels number of occupied boxes and By(M) the number of con-
decreases as we approach0, the relaxation turns out to be figurations withM occupied boxes. The typical time to in-
slower; the limiting case being the original BG model for crease by unity the number of empty boxes is given by
which a— and B~ In(t). In the other limita— —1,
when disorder becomes unnormalized, the inverse effective Q(M)
temperature diverges very fast. Already from EB3) one = QM-1)" (36)
can anticipate that the same asymptotic behavior holds for

the energysee Eq(44)], hencea interpolates between fast For distinguishable particles we hag@(M)=MN. In the

relaxation @=—1) and very slow relaxationa==). Are-  |argeN,M limit we get
laxation slower than logarithmic is not possible in the present
model. M \N N
T T:(M—l) :ex‘{ﬁ)' 37
B. Generalized adiabatic solution for theg,(€)
The equations for thg,(€) at T=0 are Using the relatiorP,=1—M/N and Eq.(36) we find
990(€) * dPy  AM 1 1
=g,(€) 1—f de'go(€e) o _ 27 _Z_ -
ot e 0 dt ~ NAt 7 AT 1op,) (38)
—go(e)fxde'gl(e’), k=0, (33 where we have used the fact that at zero temperature the
€ number of occupied boxes can only decrease by unity, thus
AM=-1.
d91(€) 2, This yields the resulPy=1— 1/In(t)+In[In(t)]} in agree-
gt~ 292()(1=Po)—ga(e) 2~ L de’go(€’) ment with the adiabatic approximation. Actually, from the
solution in Eq.(30) for z* and using the adiabatic relation
<., , . (31), we obtainPy=1-1/z*, which yields the same result.
+9o(€) L de'gi(e’), k=1, (34 The typical relaxation time(37) behaves, then, liker
=exg 1/(1—- Py) |=expE*).
g, (€) If the thresholde* plays the role of an energy barrier and
T:(k+ 1)0x+1(€)(1—Pgo)—gu(€)[1+k(1—Py)] Bes accounts for the effective thermal activation due to en-
tropic effects, we obtain, for the typical relaxation time,
+0y_q1(€), k>1. (35) T=expBsse*). This expression is only valid to the

leading order. As we will see below there are subleading

To solve the dynamical equations for tlgg(e) in the  corrections to this expression arising for the fact that the
adiabatic approximation we note that, contrarily to the globakelaxation time is better described by the expression
quantitiesP,, they cannot be equilibrated among all differ- =exp(Bere* )/ (Berre™) [Se€ Eq(45)]. Hence, at a given time
ent modes. The reason is that, due to the entropic charactecalet (i.e., the time elapsed since the system was quenched
of the relaxation, very low energy modes are rarely involvedall modes wherer<t are equilibrated at zero temperature
because the time needed to empty one further box increaséshich in this case is the temperature of the thermal bath
progressively as time goes by, hence they cannot be thoughnd therefore frozen. Modes witt»t, although dynamically
as effectively thermalized. Note that in the original BG evolving, are alsdrozenbecause the barrietgn this case
model all boxes have the same energy, hence there is entropic barriersare too high to allow for relaxation within
unique class of modes. For the general disordered model wibe time scald.
expect the existence of a time dependent energy scale Only those modes whose characteristic timerist are
separating the equilibrated and the nonequilibrated modeselaxing at a given time scake We get for the time depen-
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dent energy scale* and the effective temperature the rela- slower to zero than the effective temperature. A case where

tion €* ~In(t)/Be and this yields the leading behavior this difference can be clearly appreciated corresponds to the
P case where the density of states vanishes exponentially fast
e* ~[In(t)]~ M), (39  g(e)~exp(~Ale). In this casee* decays slower than loga-

ithmically, ly, like 1/lpin(t A dix B for de-
According to what has been said one can impose the foI{-;"g]_lca . namely, like 1/lin(0)] (see Appendix B for de

lowing ansatz solution for the(e). If g;° stands for the
S . - . e
equilibrium density aff =0 [i.e., according to Eq(16), g C. Relaxational spectrum in equilibrium
=g(€) bk ol then we have
One of the crucial features behind the applicability of the
. adiabatic approximation is that the long-time behavior at
gk( —*) (40) zero temperature finds its correspondence with the low-
€ temperature relaxational properties of the equilibrium state.

To analyze the spectrum of relaxation timeg{e) in
equilibrium we expand up to first order in perturbation
theory the dynamical equations for tlyg(e) around their
equilibrium solutionsggY€). Using the expansiory,(e)
=g¢Y€) + 89i(€) we get a set of equations for the variations
59y(€). These are shown in Appendix C.

A complete derivation of the relaxation timée) in equi-
librium is complicated. But it is easy to convince oneself that
the relaxation time is asymptoticall§in the limit T—0)
strongly peaked around the threshold enesgjy For e> €*
to fulfill condition (6). Furthermore, the condition the relaxation t.ime is.?”‘.a” bgcause the population of high

A o _ A energy boxes in equilibrium is rather small. On the other
Jodxgk(x)=1 is imposed on the scaling functiay . hand, fore/e* <1 the relaxation is estimated to be finite and

In Appendix B we show how this ansatz closes the set ofqependent off. This result is derived in the aforemen-
equations(33) reproducing also the leading asymptotic be-tioned Appendix C where we show that the maximum relax-
havior for e* andz*, which turns out to be ation time occurs for arounde*. Starting from Eqgs(C1)

for 8gq(€) and 8g4(€) and making use of the adiabatic An-
oot (41 Satz(40), we find, fore=e*,
[In(t)]l/(a+l) ’

AP,

Ag(e)=gx(e)—gile) =

E*

where AP, =P,—Pg%=P,— 8, and g,(x) decays pretty
fast to zero forx>1. This expression tells us the following.
Above €* the g,(€) have relaxed to their corresponding
equilibrium distributions at the temperature of the béth
this case the bath is at zero temperatu@n the other hand,
in the sector of the energy spectrum wherse*, the den-
sities g, are still relaxing[specially in the regione/ e*
~0(1)]. Since the relaxation is driven by the shift in time of
the threshold energy* the proposed scaling solution ansatz
seems quite reasonable. The prefacdi® /e* is introduced

ehe*
T(€*)~ , (45)

#= ), 2 -

where * (T)~TY(2" 9 is the asymptotic temperature de-
For later use, we define the following function: pendence of the threshold energy at low temperature. This
yields for the temperature dependence of the relaxation time,
Agy(e)e* . ( e)
L AT ,

GuO=—1p. -

(43) eB(a+l)/(a+2)
7(T)~

6*

ﬁ(a+ D)/(a+2) (46)
which scales as function af/ *. The scaling relatior{40)
yields the leading asymptotic behavior of all observables dif
ferent from the occupation probabiliti® . For instance, the
energy is given by = — [jde e go(€); using the scaling re-
lation (40) and the asymptotic expressi¢fl) we get for the
leading term

'showing that there is an activated behavior as a function of
the temperature but with a relaxation time that increases
slower than Arrhenius a$—0. Note that for the standard
BG model corresponding ta—o we obtain an Arrhenius
behavior and in the opposite limik— —1 the relaxation
time does not diverge anymore.

E-Ees~— fo de[go(€)—gle)]e~ (") "2
VI. NUMERICAL RESULTS

. 1 (44) In this section we numerically check the main results ob-
In(t)(e2/(a+1)’ tained in the previous sections. In particular, we want to
show the existence of the threshold eneefyseparating the
Note that the asymptotic scaling behavior of the energy ifquilibrated modes from the nonequilibrated energy modes.
the same as for the effective temperatirgi=1/Bs¢ in  We have compared three different models characterized by
agreement with the quasiequilibrium hypothefsee Eq. three different types of distributior(&ig. 3. All three distri-
(23)]. An important result is that the threshoki decays butions were chosen to satisfy the conditions
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0.8 T T T T T T T -0.5
0.7 t . -0.55 1
0.6 | 1 0.6 1
0.5 g(e)=3(e-1) 1 065 | % ]
% 04r 1 07|\ _
031 S 075f .
02t 08 | ]
0.1 ¢ 085 | .
o S 5 25 3 35 4 09 ]
0 05 1 15 2 25 3 35 4 45 -
£ -0.95 J
(a) 1
- 7
0.8 10
07} t
06 2(e)=n/2 € exp(-n 32/4) 1 FIG. 4. Energy as a function of time for the three models dis-
05 cussed in the text. The energy was computed averaging over time
3 o4l intervals At=2¥, k being an integer. The lower curve represents
- the relaxation in thex=0 DBG model(case @, the middle curve
03 r the =1 DBG model(case B, and the upper curve the standard
02} BG model(case A.
0.1
0 L R like E+1~Tes~1/In(t). As previously said in Sec. Il, the
0 05 1 15 2 25 3 35 4 45 same behavior is expected for any disorder distribudjos)
£ with a finite gap.
(0) Case BDisordered model without a gap but g () [Fig.
0.8 . 3(b)]. We have considered the distribution
0.7
a a 2
0.6 I g(e)zieexp{—ze . (49
05 g(®)=2/r exp(-sz/n)
% 04r This case corresponds @=1. The energy threshol@*
03 | scales like 1{In(t) and the effective temperature and the
02 | energy scale lik&E + 1~ T4~ 1[In(1)]¥2
01t Case C Disordered model without a gap and g(0) finite
0 T , [Fig. 3(c)]. We have considered the distribution
0 05 1 15 2 25 3 35 4 45
€ 2 ¢ 49
© 9(e)=—ex - (49

FIG. 3. Probability distribution of the energy weights of the ) .
boxes of the DBG modela) The standard backgammon model has ThiS case corresponds @=0. The energy threshold
no disordered distribution, all boxes have the same weighthe ~ Scales like 1/Inj and the effective temperature and the en-
probability distribution function of a DBG witle=1, at very low  €rgy scale likeE+1~Tg~ It~

energy the density of boxes goes to zdm.A second DBG model In Fig. 4 we plot the decay of the energy for all three
with &=0. Here the probability of having boxes with energies ar-models. Simulations were done fo¢=10%10°,1C° boxes
bitrarily close to zero is finite. (the number of particles is identical to the number of boxes

showing that finite-size effects are not big in the asymptotic
- - regime. We show data for one sample awe 10°. We plot
f deg(e)zf deeg(e)=1, (47 the energy as a function of time starting from a random ini-
0 0 tial condition [particles randomly distributed among boxes,
E(t=0)=—1/e]. As clearly seen from the figure, relaxation
in such a way that the ground state has endtgy=—1 in s faster for the case C and slower for the standard BG model
the limit N—co for all three cases. The models are the fol- (case A.
lowing ones. The different asymptotic behaviors are shown in Fig. 5.
Case A Nondisordered model with a gdfig. 3a@)]. This  There we plo{ E(t) — Egg][In()* with A\=(a+2)/(a+1).
is the original BG model wherg(e)=8(e—1). This case To avoid finite-size corrections when the energy is close
corresponds tav— o, thereforee* =1 and the threshold en- to its ground state we computed exacthEgg
ergy is time independent. The energy is expected to decay (1/N)(— =), €, + emin) Where ey, is the minimum value
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FIG. 5. E—Eg9[In()]* plotted as function of time with FIG. 7. Distributiong,(e) for case C for different times*awith
=(a+2)/(a+1) for the three different models discussed in the K=4:6:8,10,12,14,16,18,2Grom bottom to top. The continuous
text. The upper curve refers to case C, the middle one to case B, arl#® iS 9(¢) given in Eq.(49).

the lower one to standard BG modehse A. .
We do not show results for the othgy (for instanceg;)

, . because they decay very fast to zéatveady fort=2' there
among thee’s. The different curves saturate at a finite quan-g.6 no occupied boxes with more than one pantidhestead,
tity corresponding to the asymptotic leading constant. Note, Figs. 8 and 9 we verify the adiabatic ansatz, E46) and
that the convergence is slow, showing the presence of suteZB), for the densitieg), andg; in the two models B and C.
leading logarithmic corrections to the leading behavior. Figure 8 plotsGy(€) for both models. Figure 9 plotS,(e)

Let us now analyze the shape of the probability densitiegq oth models. We have used the relatigg) together with
gk(€). For this distribution we also only show results fdr  _x =In(®)+In[In()] yielding

=10° because a smaller number of boxes results in higher
noise in the curves. The distribution probabilities were nu-
merically computed by binning the axis frome=0 up to

€= €max Where €, is the maximum value o&, among all

the N boxes. One hundred bins are enough to see the behav-

ior of the time evolution of the different distributions. In

Figs. 6 and 7 we show thgy(e€) for cases B and C, respec- 1(e
tively. Note that thegy(€) converge to the asymptotic result
g(e) for e>€* in agreement with the adiabatic solutiGf0)
while they are clearly different foe<e*. The value ofe*
wheregg(€) deviates from the asymptotic curgge) shifts
slowly to zero[like 1/(In(t))*”? or 1/In(t) for cases B and C,
respectively, as can be seen in Figs. 6 and 7.

Gole)=

Ago(e){In(t)+In[In(t)]} _@o( € ) (50)

|n(t)l/(a+l) %

€

Agy(et Al( € ) -

iyl O e

Note that the scaling is pretty well satisfied and that the

gk(x) indeed vanishes for=1 yielding an estimate fo¢* is
both cases. We findeg*=6/In(t) for case B ande*

0.8 e : : : : :
0.8 : : : : . 07
0.6
07 |
06 o 05
‘ T o 04
05 ‘l ‘*. \(J_J/ .
g » ‘ a - =
—~ v‘g”m M T 03
L 04| X kS
& N 02 §
X & XX
031 | g/ 4, 0.1
hd %,
L ,
02 2 0
0.1 + X g, -0.1 ! . . .
o . . , 6 8 0 12 14
0 05 1 15 25 3 35 4 € [log(t)] 1+

FIG. 6. Distributiong(e) for case B for different times*2with
k=4,6,8,10,12,14,16,18,2(Grom bottom to top. The continuous

line is g(€) given in Eq.(48).

FIG. 8. DistributionGgy(€) as a function ofeIn(t) for case B
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0.45 —
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0.1
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0.001
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e [log(®) AE

FIG. 9. DistributionG,(e€) as a function ofein(t) for case B FIG. 10. P(AE) versus AE for different times t
(distribution with a maximurhand as a function oé In(t) for case = 10%,10%,10%,10° (from top to bottorh computed as explained in

C (monotonically decreasing distributipriTimes aret=2k with k  the text.
=6,8,10,12,14.

whereA=[° Q(AE)dAE is the acceptance rate. The ex-
~12/Int) for case C. Note also that the quality of the col- Pression forQ(AE) [and thereforeP(AE)] can be exactly
lapse of theG,, is slightly worse for case B than for case C. cOmputed. Note that computirQ(AE) yields all informa-
We think that this is due to the stronger subleading correclion about the statistics of energy changes, in particular the
tions to the shift ofe*, which decays slower to zero for case Evolution equation for the energyon the contrary, given the
B. Hence the asymptotic regime is reached only for latefime evolution for the energy this does not necessarily yield
times. Indeed, as Fig. 6 shows, the value e5f obtained the distributionQ(AE). For the DBG this function can be
within our time scales has not yet reached the maximum of*actly derived(its derivation is shown in Appendix D
the distribution g(e), so that we are still far from the Here we quote the result,
asymptotic behaviog(e*)~€*. Yet, it is remarkable how .
well the scaling ansatz Eq&10) and (43) fits the numerical fo dego(€)gi(e—AE)+(1—Pg)gy(—AE)

data. P(AE)=

A
VIl. AMETHOD TO DETERMINE THE THRESHOLD X 6(— AE), (53)

ENERGY SCALE €*

In this section we are interested in the following question.W'th
Is there a general method to determine the energy s¢ale . .
without having any precise information about the adiabatic A:f de’J dego(e')gi(e)+(1—Py)Py. (54
modes present in the system? In the previous sections we 0 e
addressed this question by proposing an adiabatic scaling ) ) )
ansatz to the dynamical equations. Here we propose a gen- Using the scaling ansatz E¢40) we obtain the simple
eral method to determine the energy sadiefrom first prin- ~ Scaling scaling relation,
ciples without the necessity of knowing the nature of the
slow modes present in the system. Obviously for models P(AE)=iI5(E)
such as the standard BG model this energy scale has no role et |\ ex |
since we know from the beginning that the relaxation takes
place on a single energy scale. A collapse of differentP(AE) for different times can be
Consider the following quantity°(AE) defined as the ysed to determine the time evolution &f. In Fig. 10 we
normalized probability density of having a first accepted enshow the scaling oP(AE) for the model B forlN=10* and
ergy change\E at timet. Let us consider the case of zero different timest=10?,10°,10*,1°. Starting from a random
temperature where this probability density is defined only fofinjtial configuration, statistics has been collected over ap-
AE=<O. If Q(AE) denotes the probability of proposing an proximately 30000 jumps for every time. In Fig. 11 we
energy change at time (the move is not necessarily ac- check the scaling relatio(s5) plotting P(AE)e* as a func-

cepthed, rit is easy to show tha® and Q are proportional to  tjon of AE/€e* where we have takee® ~ 1/yIn(t). Note also
each other,

(59

P(AE)= Q(AE) 0(— AE) (52) IAactually, in equilibrium at finite temperatur@(AE) satisfies
A ' detailed balanc®(AE)=Q(— AE)exp(— BAE).
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' ' ' ' ' ' ' a time-dependent energy thresheaft.
1t 1 All densities are out of equilibrium but admit a scaling

solution of the typey,(e/€*), with the condition that, foe
>e*, @k decays to zero fast enough to guarantee that

ffjdx@k(x)zl. That means that for energies above the
threshold the modes are almost completely thermalized.
This ansatz solution yields two types of leading behav-
iors: on one hand, they yield the asymptotic long-time be-
havior of e*,z* at zero temperature, while on the other hand
they produce the low-temperature behavior of the values of
€*,Z* in the stationary equilibrium limit—cc. The adiabatic
e approximation is nothing else but stating the validity of the
complementary description of these two very different re-
gimes. On one hand is the equilibrium regime, where first the
limit t—oo is taken and latef — 0, while on the other hand
is the far from equilibrium regime, where the limit-0 is
taken first and latet—. The commutation of these two
limits allows for the interchange between different variables
such as energy, temperature, and times when expressed in
terms of their asymptotic leading behavior. Knowing the
leading behavior of the quantities’ and €*, dimensional

. . : reasoning as presented in Appendix B yields the leading be-
The scaling works pretty well showing how this method havior of B¢, which turns out to be proportional & /e* .

could be used to guess the time evolution of the eNeT9) he DBG model offers a scenario where there are two en-

thresholde* in general glassy models in those cases where .
there exists an energy threshold. ergy sectors separated by the energy sedlewhich have

very different physical properties. These two sectors mani-
fest in the behavior of observables such as the probability
VIIl. CONCLUSIONS densitiesy,(€) where the time dependent thresheld sepa-
, i rates the equilibrated modeg>* ¢*) from the modes that
In this paper we _have (_:onS|dere_d a solva_lble glass modeg;,tay off equilibrium €< €*). In the off-equilibrium regime,
the DBG. The new ingredient of this model is that each boxgnqpic parriers are typically higher than the time-dependent
has a positive random energy associated with it, which I$arrier at the threshold leved* . For e>¢e* barriers are
obtained from a distributiog(e). Again, similarly to its pre- . ar and equilibrium is achieved faster.
decesso(BG), the model displays slow relaxation due to the
presence of entropic barriers. Actually, it turns out that the
relaxation atT=0 of the number of empty boxes and all
other occupation probabilitieB, is exactly the same as the
original BG model, and, in particular, independent of the How is the existence of this energy scale of interest? One
disorder distributiorg(e€). In general, the relaxation of other of the most interesting properties of the present model is that
quantities such as the energy and other disorder dependepintroduces, in a very simple way, the concept of a threshold
observables, displays an asymptotic relaxation that dependsergy scale. To our knowledge, such concept has never been
on the statistical properties gf ¢) in the limit e—0. In the  discussed in any one among the plethora of mean-field glassy
asymptotic long-time regime, relaxation takes place by dif-models studied during recent years. In those cases, one stud-
fusing particles among boxes with the smallest values.of ies the relaxation of global quantities that get contribution of
Therefore the asymptotic decay of the energy, as well as thaill possible energy scales involved into the problem. In prin-
of other observables, only depends on the expometitat  ciple, nothing is wrong with that since the macroscopic ob-
describes the limiting behavig(e)— e“. The original BG  servables are those quantities that are always measured in the
model is recovered as a special case in the lumit . laboratory. The problem arises when tackling issues related
We have written the integral equations for the densitieso the violation of the fluctuation-dissipation theorem and
ok(€). These equations form a hierarchy of dynamical equaeoncepts such as the effective temperature and partial equili-
tions which can be closed by introducing a suitable generatbration. Usually an effective temperature is defined in terms
ing function. We focused on the solution of this hierarchy inof the measured dissipatigresponsgand fluctuationgcor-
the particular case of zero temperature. In this case the aneelations in the aging regime. This effective temperature is
lytical solution of these equations proceeds in two stepssupposed to quantify the amount of energy transfer when the
First, the equations for the occupancieg are exactly the system is put in contact with a thermal bath and behaves in
same as in the original BG model and they can be solved bgeveral aspects as a real temperafd#16,34. There is a
using known analytical methods. Second, this information iSundamental problem with this definition, which is the fol-
used to guess an adiabatic solution for ¢h¢e) in terms of  lowing. Suppose one takes a piece of silica well belbyv

o
=

0.01 |

P(AE)/(log ty!/?

0.001 |

1/2

AE (log t)

FIG. 11. Scaling plot forP(AE)/\In(t) versusAE./In(t) for
different timest=10?,10%,10*,10°.

that the range wherB(AE) is finite corresponds to the re-
gion where e~€*. In Fig. 11 this corresponds te*

=6/y/In(t) in agreement with what was observed in Figs. 8
and 9.

IX. DISCUSSION
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(for instance, at room temperatiwr@he piece of silica is not TABLE I. Processes involved in the dynamics of the probability
in equilibrium (actually, it is always relaxing even if the densitygo(e) of empty boxes at energy.
relaxation rate is extremely small and unobservable at room

temperaturgso one would be tempted to claim that its ef-  ©ccupation Contribution tdgo(e)
fective temperaturéthat describing the equipartition among -1 Na=0 8160 o O(e—€g)— 8(e—€2)]
the set of nonthermalized degrees of freegiasnaroundT, Q'[lf(e—ﬁ(ea—ed)_ 1)0(e,—€g)]
well above the room temperature. Obviously, if we touch a n,>0 8o (1= 8, ) d(e—ey)
piece of silica, then the hand plays the role of a thermal bath  _ 4 n,=0 _(1_‘15” )b, a(’)ef;;faé(e_ea)

d a’

at the room temperature. Therefore, why we do not feel the
effective temperature that may be hundreds of degrees above

the room temperature? Note that the energy content of thggective temperature in the other sector e*. Neverthe-
glass is still very large. Indeed, if the glass suddenly crystaliggs, the most natural possibility is that the thermal fluctua-
lized it would liberate all its latent he@B3]. There are tWo  tions in the off-equilibrium sectoe< e* are determined by
possible explanations of discrepancy. The first one was angpe effective temperatursee Eq.(32)] that determines the

lyzed in the context of the oscillator model and assumes thgk|axation rate of the slow collective mo#g. Future studies
the thermal conductivity is so small that the heat transfer igp o 1q enlighten this and other related questions.

negligible over such a short time scf®]. The other expla-
nation is that, when touching the glass, we are not touching
the slow collective degrees of freedom that still contain a lot ACKNOWLEDGMENTS

of energy but the thermalized degrees of freedom. These two e acknowledge A. Garriga and Th. M. Nieuwenhuizen

explanations are not totally exclusive. Assuming the exiSo; 4 careful reading of the manuscript and suggestions. L.L.
tence of an energy threshold" such that, aboves™, all s g pported by FOM, The Netherlands. He acknowledges
collective modes are thermalized at the bath temperature anghancial support from LPTHE where part of this work was
below that threshold they are off equilibrium, this offers angone FR. is supported by the Spanish Ministerio de Ciencia
explanation about why when touching a piece of glass Wg tgcnologa, project PB97-0971. F.R. acknowledges support
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higher energy degr(_aes of fregdc(phonon$ and not to the 54 Acciones Integradas HF2000-0097
(much hottey collective excitations. Yet, we cannot exclude

that even if we coupled the bath to the hottest collective
degrees of freedom then the conductivity would be ex- APPENDIXA: OCCUPATION PROBABILITY DENSITY
tremely small and no heat transfer would be measured. From EQUATIONS

a different point of view, the two different explanations for |, his appendix we derive the equations of motion for the

the small amount of heat transfer established between a bag&cupation probability densities for box energy between

and the “hot” glassy sys;iém_ reduce to a single one: the exanq 1 de. First we start from the densities of having zero
istence of a threshold scaé€ is a consequence of the highly particle in a box of energy.

different orders of magnitude for the conductivities in the™ |, Taple | we list the processes contributing to the evolu-

two energy sectors. Future studies of other glassy modelgy, of the occupation probability density of boxes contain-

will l_:)etter clarify this issug 35] : ing zero particles. In the left column, we show the processes
Finally, we have pri)posed a method to determine th&,q1ved in terms of occupation numbers of the departure
threshold energy scale” by computing the general prob- 4y anq of the arrival box. In the right column, we write the

ability distribution Q(AE). Preliminary investigations in  correspondent contribution of a given process to the varia-
other glassy models show that this distribution provides g5, of the occupation density gy(e).

general way to determine the threshold scdie Moreover, The particle for which a jump is proposed is chosen in

it gives interesting information about fluctuations in the ag-,4y § with probability ng/N. The arrival box is chosen with
ing state although future work is still needed to understand,itqrm probability 1N.

better its full implications in our understanding of the aging e total difference per particle in the probability density

regime. of empty boxes of energy is then
Further investigations in this model will address other is- Py %

sues such as the measurement of effective temperatures. For 1NN
instance, it would be interesting to understand how the effec - Pp - e — _
g Do(e)= 2 2 ' N {0ng1dn,d e~ ea) = dle—ea)]
X

tive temperature, defined as the temperature of the thermal
bath, which does not produce a net thermal current when put
in contact with the system, depends on the energy sector
probed by the bath. By coupling the bath with a selected set
of modes of energy we can understand whether there is a +6n,1(1=6n_o)6(€—€q)— (16, 1)
single effective temperaturg,; for all modes or rather, there

is an e dependent temperature. Note that the local equilib-
rium in this model is only valid in the energy sector e*

and it could well be that there does not exist a well definedJsing Egs.(3)—(6) and the following identities:

[1+ (e Pa™d—1)0(ea— €q)] (A1)

X 5na,oefﬁ5a5( €—€,y)}. (A2)
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TABLE Il. Processes contributing to the dynamicsgaf€).

PHYSICAL REVIEW E65 056125

TABLE lIl. List of the processes involved in the dynamics of

the probability densityg,(€), for k>1.

Occupation Contribution tag4(€)
Occupation Contribution ta g (€)
ng=1 Na=0 5nd,15na,0[5(€_6d)_‘S(E—Ea)]

X[1+ (e Pleacd—1)0(ey— €q)] ng=h<k n,=k—1 5nd,h5na,k715(5_6a)
na=1 _5nd,15na,][5(5_6d)+5(6_551)] na=k _5nd,h5na,k5(5_fa)
n,>1 — 8, 1(1=8, 1— 8, o) d(e—¢ ng=k n,=0 — 80 1O oO(e—€,)e Pea

a nd,l( n,1 na,O) ( d) d a ng k¥ny,0 a
ng=2 n,=0 Sndyzéna,o[b‘(e—ed)-i-5(e—ea)]e_ﬁfa 0<ng=h<k-1 ~ Ony kOn, hO(€~ €a)
Ny= 5nd,25na,j[5(€_€d)_5(€_€a)] na=k—1 _5nd,k5na,k—1[5(e_€d)_5(6_531)]
ng>1 5nd,2(1_ 5na,1_ 5na,o) d(e—€q) na=k - 6"11 ,k5né1 Kl 5£€_ €q) T (e~ €,)]
ng>2 ny=0 (1- 5nd,2_ 5nd,1) 5na,05(5_ Ea)e7B€a Na>k - 5”d k(1- tho‘sna h) (e~ €q)
Na= — (1= 8n,2= 8n,1) By 18(e— €5) ng=k+1 n,=0 — 8n, k100, 00(€— €g)e Fea
O<na<k71 andyk*_l&na'ha(fffd)
Na=k—-1 5nd,k+15na,k—1[5(€_ €g)+ 0(e—€,)]
1 N na=k 5nd,k+15na,k[5(€_sd)_é(e_fa)]
N > Sn,00(€a— e)e Alam9—1] n.>k Sny ke 1(1=ZK_8, ) (e~ €q)
a=o ng>k  ng=k-1 (1=K 100, 1) On, k- 10(e— €2)
» , na=k (12180, 1) On, kyd(e—€5)
- [Caer gotente 011, a9
€
dg94(€) ®
gl :292(6) 1+J dEgo(G)eiﬁe_ PO
1 N at 0
N 2 Nadn,10(e—eq)[e < @—1] }
d=0 !
—gi(e) 2+f de’go(e’) (e AL E’—l)}
€ €
=J de’ gy(e')[e A<D —1], (A4)
i +gole)| e Pt Py(1-e 4)

+f de'g (') (e Aleme)—1)
0

N
aZO S 00(e—€g)e Fla=go(e)e P, (A5)

Z|l -

For densities of boxes witk>1 particle the scheme of
the contributions is presented in Table IlI.

we get the equation of motion fay,(e) [namely, Eq.(24)],
Combining all the contributions we obtain fgi(e) Eqg.

(26)
d9o(€) —Iim Ago(e)
o onee IN P04 1+ 1ygia(e)| 1+ | “dego(ere e Po)
ot 0
= 1+ | de'go(e)(e B 91 »
g1(e) L €'go(€’)(e )} ()| 14+k+k fo dego(e)e P Po”
—go(e)| e P +Py(1-e P9 +gk-1(€).

APPENDIX B: ANSATZ FOR THE ADIABATIC

+ fode’gl(e’)(e’“”')—l)} APPROXIMATION

In this appendix we show that the ansatz soluti40) is
asymptotically a solution of Eq$33)—(35) at T=0 yielding

We then consider the evolution of the probability density . - "
for boxes containing one particle. In Table Il we list the (€ leading behavioe™ (41). We start by rewriting Eq(40)

processes contributing to the evolution of such occupatioff? the following way:
probability density. A
Departure boxes are chosen with probability/N. Ar- Agy (€)= ﬂhk( i)
rival boxes are chosen with uniform probabilityNL/ €
Using again Eqs(3)—(6) and Eqs(A3),(A5) we are able
to derive the equation of motion for the probability density Where AP =Py— 3o, Agi(€)=0k(€)~ ko9(€), Ni(x)
of boxes with one particles and energy equako =X0k(X), and [5dx g(x) = [dx h(x)/x=1. Here we will

- B1)
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perform the analysis for the cake=0. The equations fok  independent and should yield all the scaling functigpsx)
>0 can be obtained in a similar fashion. Substituting thisonce appropriate treatment is done of the amplitude constant,
expression into E¢(33) we get which fixes the leading behavior ef:.
We also consider, as an example, the case in which the
probability distribution of the quenched disorder becomes

ddo(€) JAPol [ e} AP [ e)de"(t) exponentially high at high values afand zero for low val-
gt ot € %\ex| ()2 Oler) dt ues, namely, we choose
Apl € €
- 22| 2| [ fdeaen .
€ € 0 g(e)=ex - (B6)

o 1 €
_Apof dE,_’ho(_*)‘|
< € € For this choice [§de'g(e’)~ — e exp(—Ale)—AT(0A/€),
AP, . where the generalize_d Euler functidif0,x) goes to_ zero as
g(e)+ Tho(_*) x—oo, In order to estimate* from Eg.(B3) we notice now

+AP;
€ that for P, Eq. (B5) is still valid, while for AP, we obtain

x J “de | < (82)
6 - - 7
€ e e A
APy~—¢€*exp ——/|, (B7)
6*
whereh((x) stands for the first derivative &f,(x). Note that
the scaling functiorm, does not depend on time, hence there Lo
is no termdhy/dt in that expression. Now introduce E@9) eventually yielding
in the first term on the left-hand side of E@®2) and multi-
ply the whole equation by/AP, to obtain
* ~
€* (1) In[n(0] (B8)
dln(e*)
AP hg(x)+x hg(x) pr
APPENDIX C: APPROACH TO EQUILIBRIUM OF THE
1 (e A OCCUPATION DENSITIES
~ 4P ()| 55| ‘de'ate)— [ axao00 e
00 X We present the equations of motions for the occupation
eg(e) o densities in the asymptotic regime. The values of the densi-
- F+ ho(x) APJ dx'g(x), (B3) ties are expanded to first order around their equilibrium val-
0 X

ues:gy=ggH 89y,

where g,(x) =[h(x)/x]. From this equation we can guess 989(€)
the scaling behavior of all quantities in the asymptotic large-

=691(€)

1+ f de'ggYe")[e Ple' 9 - 1]]

time limit €* —0. In the sectok<€* we useg(e)~ €“ ob- at
taining [§de’g(e’)~€*" 1. Assuming all terms of the same
order, we get fore~ €*, —38go(e)| e P+ PY1—e P
APy~ (e*)t1 (B4) +zf de’ggc’(e’)(e’ﬁf—e’ﬁf')) +gode)
0
dln(e*) X zf de’ 5go(€') (e~ P —e B
AP ~— . (B5) e
at

Using the standard adiabatic result8l), P,=1 —(1—9_56)f de’ 591(€’)
—1/z* ,P,=1/[exp(*)] we obtain the result&41l) and (42). 0
Note that the set of equations fby are still impossible to € ,
solve. Only in certain regimes such as e* it may be pos- —f de’' 5g,(e')[e Al e )—1]}, k=0,
sible to obtain results. There is a set of equations which 0
couples the differenh,. But this set of equations is time (C1
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TABLE IV. Contributions to the probability distributio@(AE) of proposed energy updates.

Occupation Contribution t&' — E Probability
ng=1 n,=0 —€qt €,y 91(€q)o(€a)
n,>0 —€g 91(€a)[9(€a) —Go(€a) ]
ng>1 n,=0 €a 1
9o(€a) g ZpNpl9(€a) —91(€q) ]
n,>0 0

1
[9(€a) —go( 6a)]Nanp[g(fd) —01(€g)]

2

P00 2 sge)— e

ot

2+J de’'go(e’)[e Al 9

—1]|+8go(€)| e P+ P 1—e P9

+zrde’go(e’)(e‘ﬁf—e‘ﬁf) —gol(e)
0

><[zze‘ﬁsf;de’5go(e’)(1—e‘ﬁf/)
+ijd€/590(6')(6_B6/—8_B6)

~(1-e ) [ “aetsaue - | “dersny(e
(C2

X[efﬁ(efe’)_ 1]}, k=1,

k+1
z

39 €)
ot

=60y11(€) —ogx(e) + 69y 1(€)

k
14—
4

k+1

k!

z K\ (=
~go{e) eﬁf(l—z)f de’ 5go(e’)
0

X(1—e P, k>1. (C3)

In the above equationd is the inverse thermal bath tempera-

ture andz is the equilibrium fugacity at that temperature.
As T goes to zerd B—x, z(B)—=] the equations for

the first order perturbation to equilibrium can be closed,

a6 o
W sgute)- [ delag(ern(e)
to(aom(e)], k=0,  (C4
a6 o
A~ 2sge+ [ aelan(en(e)
+o(eog(e)], k=1, ©s)
a6
?9';(6)=—6gk(e)+5gk,l(e), k>1.  (CH)

In order to estimate the relaxation characteristic time to
equilibrium at low temperature we can expand E@31).
First we introduce the asymptotic threshold ene¢§yT) as
the energy discriminating between the thermalized and the
nonthermalized collective modes at temperaflirf we de-
fine it through the relatior™ (T)=Tz(T) and use the rela-
tion (22) obtained by doing a lovil- expansion then we get

(C7)

wherez, is the coefficient of the leading term fT) at low
T [see Eq(22), z(T) =2z, T @/(2+a)],

Then we expand Eq$Cl), takee=€*, and introduce the
following adiabatic ansatz:

e* (T) — ZOT1/(2+ 01)’

AP(T ).
(1) X

Sgk(€)=gx(e) —gpie)= . (CY

e*(T)

Note that this solution is equivalent to the ansatz Edf)
introduced for the asymptotic dynamics at zero temperature
but with a statice* (T) now replacing the dynamical thresh-
old. Now consider EQg.(C1) for dgq(e). Because 5Py

= [dedg(€) it can be shown that the slowest mode corre-
sponds tk=0, i.e.,8gy(€)> 69, (€) for k>0. Therefore the
second term in the right-hand side of EG1) dominates the
first and the second terms. Introducing EQ8) into Eq.(C1)

we get that the relaxation time behaves like

ehe
Be*

For e>€* the relaxation time is much smaller, since those
are the modes with lower energy barriers.

(C9)

Ted €)%

APPENDIX D: PROBABILITY DISTRIBUTION
OF PROPOSED ENERGY UPDATES

In this appendix the probability distribution of proposed
energy updates is built. In Table IV we summarize all the
processes contributing to it, together with their probabilities.

The probability distributionQ(AE) of proposed energy
updates is the average of all possible changes, each com-
puted with its probability,

Q(AE)=46(E'—-E—-AE), (DY)
where AE is the proposed updaté& is the energy of the
system before the updating, aid the energy afterwards.
This means
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Q(AE):j:dejomdf,gl(é)go(6,)5(A+6—6/)"‘J:dff:df/gl(e)[g(f')_90(6,)]5(AE+5)
T 1 . [ 1
+JO ol«sj0 de'go(e )y S np[g<e>—gl<e)]5<A—e'>+fo defo de'Ta(e)~ ole) T
x% nplg(€)—g1(€)18(AE)

= KEdego(e)gl(e—AEH(l— Po)g1(—AE)8(—AE)—(1—P4)go(AE)6(AE)

+(1-Pg)(1—P41)S(AE). (D2)

The term withS(AE) is the term responsible for diffusive with A= [{de’ [ degy(e’)g1(€) +(1—Pg)Py.

motion of the particles. Such a term does not actually make The normalization factoA is actually the acceptance rate
any contribution to the relaxation of the system and thereforgf the Monte Carlo dynamics

we will not consider it from now on.

The probability distribution of accepted energy changes is

given by
AE)W(BAE
p(aE)— AAEWBAE) 03
A
whereW(BAE) is the Metropolis function
e A if x>0,
WBO=11 it x=o. (b4)

The normalization factor is
A= fo de’ f (defePle"<gq(e)ga(€’) +do(€')gs(e)]

+(1-Pg)P;+(1— Pl)f dego(e)e Pe. (D5)
0
As T—0 the distributionP becomes

P(AE)=6(—AE)

fowdfgo(e)gl(f—AE)+(l— Po)g1(—AE)
A ,
(D6)

X

A= f " axWiaxQ() o)

as it was defined in Ref7].
Using the same notation we can write the energy evolu-
tion as

JE o
E:f_deXV\(ﬁX)Q(X)
=—-P,E- fo degq(e)et+ fo de'L,degl(e’)go(e)
x[e Bl —1](e—€)
+(1—P1)focdego(e)efﬁee. (D8)
0

The right-hand side of this equation can be equivalently ob-
tained following the procedure presented in Appendix A. In-
deed, by definition of energy density,

E__ f " ge J9ote) (DY)

N T

Inserting Eq.(24) in Eq. (D9) we get Eq.(D8) back.
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