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In this paper we consider an exactly solvable model that displays glassy behavior at zero temperature due to
entropic barriers. The new ingredient of the model is the existence of different energy scales or modes
associated with different relaxational time scales. Low-temperature relaxation takes place by partial equilibra-
tion of successive lower-energy modes. An adiabatic scaling solution, defined in terms of a threshold energy
scalee* , is proposed. For such a solution, modes with energye@e* are equilibrated at the bath temperature,
modes withe!e* remain out of equilibrium, and relaxation occurs in the neighborhood of the thresholde
;e* . The model is presented as a toy example to investigate the conditions related to the existence of an
effective temperature in glassy systems and its possible dependence on the energy sector is probed by the
corresponding observable.
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I. INTRODUCTION

The study of exactly solvable models has always been
active area of research in the field of statistical physics. T
help us to grasp the general principles governing the phys
behavior of realistic systems, which, due to the complica
interactions among the different constituents, cannot be
dicted using standard perturbative techniques. Glasses
general, are systems falling into this category. The slow
laxation of glasses observed in the laboratory is a con
quence of the simultaneous interplay of its constituen
which yields a very complex and rich phenomenology.

It is well known that glasses fall out of equilibrium whe
the characteristic observation time is larger than their re
ation time. Because the relaxation time is strongly depend
on temperature, it turns out that glasses are immediately
of equilibrium as soon as the temperature is few degr
below the glass transition. Well below the glass transit
temperatureTg no time evolution is apparently observed
the glass and one is tempted to conclude that the glass is
stationary state. Nothing more far from the truth. Glasses
relax but slow enough for any change to be observable
laboratory time scales. Old experiments on polymers rev
that the slowly relaxing state corresponds to an aging s
@1#. That is, if the system is perturbed while being in
aging state, then the characteristic time associated with
response of the system scales with the age of the system~i.e.,
the time elapsed since it was quenched!. Another way to look
at this aging phenomena is to evaluate the time autocorr
tion function. It is observed that the typical decorrelati
time scales with the age of the system@2#.

A simple scenario to explain these results is the followin
Consider a liquid well aboveTg where correlations deca
exponentially with time. One may consider the resultant
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havior of the liquid as the superposition of different and
dependent harmonic modes. Each of these energy modes
responds to a normal mode of a system and describe
collective oscillation ofN atoms around their local minima
This is the harmonic approximation that is known to wo
quite well in liquids. Nevertheless, already as the tempe
ture goes below acritical temperatureTc ~the transition tem-
perature predicted by the mode-coupling theory@3#! other
collective modes different from that of the standard vib
tional ones become important. The nature of these mode
quite different from the usual harmonic normal modes b
cause they do not represent oscillations around a given
figuration within a metastable well but transitions among d
ferent wells. These modes are reminiscent of some type
instanton solutions recently computed in the framework
some spin glass models@4#. Below Tc , relaxational dynam-
ics proceeds by activation over the barriers characteriz
these collective modes. Now, the main difference betw
these collective modes and the usual harmonic modes r
on how they relax to equilibrium when put in contact with
thermal bath at temperatureT. Relaxation to equilibrium is
determined by the height of the energy barriers separa
different modes. Suppose a given normal mode has
quencyvk and energyEk}vk

2 . The relaxation time for each
of these modes is typically of ordertk;exp(Ek /kBT). There-
fore, as the energyEk becomes lower than the thermal ba
temperature this mode rapidly equilibrates. On the contr
if Ek@kBT, this mode remains frozen. Collective modes a
different. As the reference energy of the collective mod
depletes, the typical barrier separating these modes incre
leading to the contrary behavior and to superactivation
fects. While high-energy collective modes are separated
low barriers, low-energy collective modes are separated
high barriers. A simple schematic representation of this s
nario in a one-dimensional configurational space is show
Fig. 1. This behavior is common to the majority of exac
solvable glassy models@5–7,18#, phenomenological trap
©2002 The American Physical Society25-1
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models@8#, and kinetically constrained models@9# to cite a
few.

In what follows we will use the generic wordmode to
refer to this kind of collective excitation. Let us label th
modes with the integer variabler and let us denote thei
energy bye r . Let us suppose that the energy levels are
dered from lower to higher energies according to the laber.
It is natural to assume that there is a characteristic moder *
with associated energye* such that, all modes withe r@e*
have already relaxed, while in the other limit,e r!e* , all
modes are frozen. If the system is quenched well belowTc
then equilibration cannot be achieved in laboratory ti
scales, this means that all modes belowe* remain frozen
while modes abovee* remain equilibrated at the bath tem
perature. The energy thresholde* decays with time because
as time goes by, higher barriers are accessible to the sys
The resulting scenario is that of a liquid where collecti
modes abovee* are in some sort oflocal equilibriumat the
temperature of the bathT while modes belowe* are frozen.
This scenario, as it stands, is too naive because it is base
the assumption that there are no dynamical correlations
tween the different modes, i.e., the high-energy modes do
influence the low-energy modes. While this is true in t
equilibrium state it may not be valid~and indeed it is not!
when any type of local dynamics induces correlations
tween different modes. Still it is interesting to investigate
which conditions such a description turns out to be corre
Examples where this type of description holds are mean fi
models @5,10–13#. By mean-field we mean those mode
where there is no spatial dimensionality associated with
set of interactions. In these cases, different modes are
related to different length scales. Therefore local dynam
rules do not necessarily induce correlations between the
ferent modes. Generally speaking, the identification of t
energy scale remains an open problem for which we do
have yet a complete understanding.

This energy scalee* is related to what has received th
name of effective or fictive temperatureTeff in the most re-

FIG. 1. A one-dimensional example of an energy landscape
collective modes: high-energy collective modes are separate
low barriers while low-energy collective modes are separated
high barriers.
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cent literature about glassy dynamics@14–20#. Teff is an ef-
fective time-dependent parameter describing equilibri
fluctuations for those thermalized modes withe@e*
5kBTeff . While a thermometer coupled to the fast modes
expected to measure the bath temperature, a thermom
coupled to the slower ones should yield the effective te
perature. Hence, the effective temperature corresponds t
energy threshold that separates collective modes which
frozen from those which have relaxed to the bath tempe
ture. Relaxation, then, takes place at energy scales in
neighborhood of the threshold valuee* . For real systems
this energy threshold is related to the typical volume of
drop that is able to release strain energy during its relaxa
to equilibrium. A scenario on this type of physical mech
nism for glassy relaxation has recently been introduced
Ref. @21# where this threshold energye* has been related to
the size of the cooperative region as an explanation of
fragility and superactivation anomalies in real glasses.

The existence on an effective temperature is tightly
lated to the validity of some approximations used in the c
text of slowly relaxing systems such as the adiabatic appr
mation. Within the adiabatic approximation one obtains
Markovian description for the dynamics. Again, this Ma
kovian description encodes within a single parameter~the
effective temperature! all the complicated past of the system
The adiabatic approximation has been shown to give the
rect asymptotic dynamical behavior in some simple mod
of glasses such as the backgammon model@22,23# while for
the majority of the other most famous models in the lite
ture ~for instance thep-spin model@5#! the implementation
of such approximation is generally not yet known. Qu
probably, a Markovian description for glassy dynamics
unrealistic and the original idea of experimentalists@24# to
encode the dynamical behavior into effective parame
such as the effective pressure or the effective~else said fic-
tive! temperature could be the only labels without a de
physical meaning.

These ideas have been contrasted in several exactly s
able models. All these models have the advantage of be
mean field, hence dynamical equations can be closed in
or another way. Still, the mean-field character of these m
els does not generally allow to investigate in a simple w
the relaxational properties of the different modes of the sp
trum. In general, the dynamics of all these models has b
studied by addressing the closure of the dynamics assoc
with the global quantities~such as the energy or correlation
response functions! that do not discern the contribution to th
global relaxation of the different energy modes. Examples
these models are thep-spin model@5,10,13,16#, the back-
gammon @20,22,23,25#, the harmonic oscillator, and othe
spherical spin models@7,16–18#. The question of the exis
tence of an effective temperature is also tightly related to
particular way in which the fluctuation-dissipation theore
~FDT! is violated@13,26,27#. The question whether there ex
ists a single effective temperature describing the violation
FDT is still controversial~see, for instance, Ref.@28#!. We
believe that this and other related questions can be be
addressed, even at the level of mean-field models, by ana
ing the contribution of all different modes. The analysis
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DISORDERED BACKGAMMON MODEL PHYSICAL REVIEW E65 056125
the harmonic vibrational modes in glasses is already an
teresting step in this direction@29# although here we have in
mind other type of collective modes.

The purpose of this paper is the study of a model wh
the dynamical relaxation of the different energy modes
be made explicitly clear. This model is what we refer to
the disordered backgammon model~DBG model! and con-
sists in a generalization of the backgammon model to al
different energies for different boxes. Again, just like its pr
decessor, the slow relaxation of this model is due to entro
barriers. For the DBG model we show the existence of
energy thresholde* (t) that separates the equilibrated mod
from the nonequilibrated modes. The DBG model@with its
associated thresholde* (t)# provides a microscopic realiza
tion that is reminiscent of some phenomenological mod
proposed in the past such as the trap model in a tree con
ered by Bouchaud and Dean@30#. The advantage in the DBG
model is that now one can exhaustively investigate the
tinct relaxation of each of the different energy modes veri
ing whether the scenario of the effective temperature p
sented before holds. This will help to better understand
meaning of the effective temperature and its relation with
violation fluctuation-dissipation theorem.

In Sec. II we introduce the DBG model. Its thermod
namic properties are reported in Sec. III, where the spe
case of very low temperatures is explicitly worked out.
Sec. IV we present the dynamical equations whose solut
are found within an adiabatic approximation in Sec. V. Th
the features of such an approximation are carefully analyz
In Sec. VI numerical results are presented for two spec
models belonging to the family of DBG models. Finally,
Sec. VII, a method is introduced in order to estimate
threshold energy scalee* directly from the dynamics. In
Sec. VIII we present our conclusions. Some technical iss
are presented in four different appendixes.

II. THE DISORDERED BACKGAMMON MODEL

A. Definition of the model

Let us takeN particles that can occupyN boxes, each one
labeled by an indexr that runs from 1 toN. Suppose now
that all particles are distributed among the boxes. A giv
box r contributes to the Hamiltonian with an energy2e r
only when it is empty. In this case the total Hamiltonian
the system reads

H52(
r 51

N

e rdnr ,0
, ~1!

whered is the Kronecker delta andnr denotes the occupanc
or number of particles in boxr. Thee r are quenched random
variables extracted from a distributiong(e) that we assume
to be defined only fore>0. The interest of this definition
will be discussed below. Like in the original backgamm
~BG! model@6# we consider Monte Carlo mean-field dynam
ics where a particle is randomly chosen in a departure
and a move to an arrival boxa is proposed. Ifd denotes the
departure box, the proposed change is accepted acco
to the Metropolis rule with probability W(DE)
05612
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5min@1,exp(2bDE)# where DE5eadna,02eddnd,1 . Note
that the departure box satisfiesnd>1 and departure boxe
are chosen with probabilitynd /N. This dynamics corre-
sponds to the Maxwell statistics where the particles are
tinguishable and differs from the one corresponding to
Bose statistics@31,23,32,20# where the particles are indistin
guishable and arrival boxes are chosen with uniform pr
ability 1/N.

In the dynamics the total number of particles is conserv
so that the occupancies satisfy the closure condition

(
r 51

N

nr5N. ~2!

Now we want to show that the interesting case cor
sponds to the situation whereg(e) is only defined fore>0.
In this case, the dynamics turns out to be extremely slow
low temperatures, similarly to what happens for the origin
BG model. The difference lies in the type of ground sta
The ground state of Eq.~1! corresponds to the case where
particles occupy a single box, the one with the smallest va
of e. Let us denote bye0 this smallest value. Then th
ground state energy is given by the relationEGS5
2( r 51

N e r1e0. Since all thee are positive no other configu
ration can have a lower energy. Ifg(e) is a continuous dis-
tribution the ground state is also unique. Now it is easy
understand that, during the dynamical evolution at zero te
perature, all boxes with high values ofe become empty quite
soon and the dynamics involves boxes with progressiv
lower values ofe. The asymptotic dynamics is then dete
mined by the behavior of the distributiong(e) in the limit
e→0. If g(e);ea, for e→0, we will show that the
asymptotic long-time properties only depend ona. Note that
the normalization of theg(e) imposesa.21. This classi-
fication includes also the original BG model where there
no disorder at all. In that caseg(e)5d(e21) so the distri-
bution has a finite gap ate50. The behavior correspondin
to this singular energy distribution can be obtained from
previous one in the limiting casea→`.

One important aspect of the model~1! is that, in the pres-
ence of disorder, it is not invariant under an arbitrary co
stant shift of the energy levels. Actually, by changinge r

→e r85e r1c with c>0, the model turns out to be a comb
nation of the original model and the classical BG mod
After shifting, the new distributiong(e82c) has a finite gap
~equal toc plus the gap of the original distribution!. The new
model corresponds again to thea→` case and the
asymptotic dynamical behavior coincides with that of t
standard BG model. As we will see later, the present mode
characterized by an energy thresholde* that drives the re-
laxation to the stationary state. Only when the energy thre
old can go to zero we have a different asymptotic behav
For all models with a finite gap,e* cannot be smaller than
the gap, hence asymptotically sticks to the gap and the re
ational behavior of the DBG model with a finite gap corr
sponds to that of the standard BG model.

One of the outstanding features of this model is tha
description of the dynamics in the framework of an adiaba
approximation turns out to be totally independent from t
5-3
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type of distributiong(e) ~and hence ofa) despite the fact
that the asymptotic long-time behavior of the effective te
perature and of the internal energy depends on the v
of a.

B. Observables

Like in the original BG model we define the occupatio
probabilities,Pk , that a box containsk particle,

Pk5
1

N (
r 51

N

dnr ,k , ~3!

and the corresponding densities that a box of energye con-
tainsk particles

gk~e!5
1

N (
r 51

N

d~e r2e!dnr ,k , k>0, ~4!

g~e!5
1

N (
r 51

N

d~e r2e!. ~5!

The Pk and thegk are related by

Pk5E
0

`

gk~e!de, k>0, ~6!

and the conservation of particles reads

(
k50

`

Pk51, (
k50

`

gk~e!5
g~e!

E
0

`

g~e!de

5g~e!. ~7!

The energy can be expressed in terms of the densityg0(e) as

E52E
0

`

de e g0~e!. ~8!

This set of observables depends on time through the t
evolution of the occupanciesnr of all boxes. In the following
section we analyze the main equilibrium properties of
model.

III. EQUILIBRIUM BEHAVIOR

The solution of the thermodynamics proceeds similarly
for the case of the original BG model. The partition functi
can be computed in the grand partition ensemble. It read

ZGC5 (
N50

`

ZC~N!zN, ~9!

wherez5exp(bm) is the fugacity,m is the chemical poten
tial, andZC(N) stands for the canonical partition function
a system withN particles. The canonical partition functio
can be written as
05612
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ZC5 (
nr50

N
N!

) r 51
N nr !

expS b(
r 51

N

e rdnr ,0D dN,(
r 51

N

nr
, ~10!

whered i , j is the Kronecker delta. Introducing this expressi
in Eq. ~9! we can writeZGC as an unrestricted sum for all th
occupanciesnr ,

ZGC5N! (
nr50

`

)
r 51

N
znr

nr !
exp~be rdnr ,0

!. ~11!

The factorN!/ ) rnr ! in the partition functionZC is intro-
duced to account for the distinguishability of particles. Th
factor leads to an overextensive entropy~i.e., the Gibbs para-
dox! that can be cured eliminating fromZGC the overcount-
ing termN! in the numerator. The final result is

ZGC5expH (
r 51

N

lnF (
n50

`
zn

n!
exp~be rdn,0!G J , ~12!

yielding the grand-canonical potential energy per box

G5F2m52T
ln~ZGC!

N

52T(
r 51

N

ln@exp~be r !1exp~z!21#

52TE
0

`

g~e!ln@exp~be!1exp~z!21#de, ~13!

whereF is the Helmholtz free energy per box. The fugacityz
is determined by the conservation condition~2! that reads

]G

]m
521 or, equivalently,

]F

]m
50, ~14!

yielding the closure condition

E
0

` g~e!

exp~be!1exp~z!21
de5

1

z exp~z!
. ~15!

This equation gives the fugacityz as function ofb and, from
Eq. ~13! and its derivatives, the whole thermodynamics.
particular, the equilibrium expressions forgk(e) are

gk
eq~e!5

zkg~e!exp~bedk,0!

k! @exp~be!1exp~z!21#
, ~16!

the correspondingPk being given by Eq.~6!, which together
with the closure relation~15!, leads to the expression

Pk
eq5dk,0S 12

exp~z!21

z exp~z! D1~12dk,0!
zk21

k! exp~z!
. ~17!

Starting from Eq.~8! the equilibrium energy density is ob
tained as
5-4



tu

f

w-

ic

f

of

d

V
c

g
-
n

s
nn

cu-

mi-
e is
ili-
nly
ee
e in-

vel

we

ium

e

DISORDERED BACKGAMMON MODEL PHYSICAL REVIEW E65 056125
Eeq52E
0

`

de
e g~e!exp~be!

exp~be!1exp~z!21
. ~18!

All these expressions can be evaluated at finite tempera
Note that, although the values ofPk

eq in Eq. ~17! are inde-
pendent of the disorder distributiong(e), they directly de-
pend on that distribution through the equilibrium value oz
@which obviously depends on theg(e)#. Of particular interest
for the dynamical behavior of the model are the lo
temperature properties that we analyze below.

Thermodynamics at low temperatures

A perturbative expansion can be carried out close toT
→0 to find the leading behavior of different thermodynam
quantities. Let us start analyzing the closure condition~15!.
Doing the transformatione85be, Eq. ~15! can be rewritten
as

TE
0

` g~Te8!

exp~e8!1exp~z!21
de85

1

z exp~z!
. ~19!

In the limit T→0 the fugacityz depends on the behavior o
g(Te8) in the limit T50, i.e., on the behavior ofg(e) for
e→0. Assumingg(e);ea for e!1 we define the function
h(e) through the relationg(e)5eah(e), where h(e) is a
smooth function ofe with h(0) finite. The integral can be
expanded aroundT50 by taking successive derivatives
the functionh,

z exp~z!Ta11E
0

` e8a

expe81exp~z!21

3 (
k50

`
h(k)~0!~Te8!k

k!
de851. ~20!

Using the asymptotic resultz→`, when T→0, everything
reduces to estimate the following integral in the largez limit:

E
0

`

dx
xa1k

exp~x!1exp~z!21
;za1k11 exp~2z!. ~21!

The termk50 in the series yields the leading behavior forz,
which turns out to be

z;b (a11)/(a12). ~22!

In a similar way the energy can be computed to leading or
in T,

E5EGS1aT1O~T2!, ~23!

giving a finite specific heat at low temperatures. In Sec.
we will show explicitly such a behavior for two specifi
DBG models, one witha51 @defined in Eq.~48!, Sec. VI#
and the other witha50 @Eq. ~49!, Sec. VI#. Solving Eq.~15!
numerically for z(T) in each specific model and insertin
z(T) in the expression~18! for the equilibrium energy den
sity, we get the energy dependence on the temperature. I
cases, at equilibrium, the energy is linear for lowT, as pre-
05612
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dicted in Eq.~23!. It yields, therefore, a finite specific heat a
corresponds to a classical model with Maxwell-Boltzma
statistics~see Fig. 2!.

IV. DYNAMICAL EQUATIONS

Here we consider the dynamical equations for the oc
pation probabilitiesPk and their associated densitiesgk(e).
The dynamical equations in this model are derived in a si
lar way as for the standard BG model. The main differenc
that in the DBG the equations for the occupancies probab
tiesPk do not generate a closed hierarchy of equations. O
for T50 such a closed hierarchy is obtained. As we will s
later, this has important consequences when we becom
terested in the zero-temperature relaxation.

A hierarchy of equations can only be obtained at the le
of the occupation probability densitiesgk(e). A detailed deri-
vation of these equations is reported in Appendix A. Here
show the final result,

FIG. 2. Left, energy dependence on temperature at equilibr
for two DBG models, witha51 anda50. Also the energy for the
standard BG model (a→`) is plotted. Right, specific heat for th
same models. For all cases~disordered or not! it turns out to be
finite at T50.
5-5
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]g0~e!

]t
5g1~e!F11E

e

`

de8g0~e8!~e2b(e82e)21!G2g0~e!

3Fe2be1P1~12e2be!

1E
0

e

de8g1~e8!~e2b(e2e8)21!G , k50, ~24!

]g1~e!

]t
52g2~e!S 11E

0

`

deg0~e!e2be2P0D 2g1~e!

3F21E
e

`

de8g0~e8!~e2b(e82e)21!G1g0~e!

3Fe2be1P1~12e2be!1E
0

e

de8g1~e8!

3~e2b(e2e8)21!G , k51, ~25!

]gk~e!

]t
5~k11!gk11~e!S 11E

0

`

deg0~e!e2be2P0D
2gk~e!F11k1kS E

0

`

deg0~e!e2be2P0D G
1gk21~e!, k.1. ~26!

The equations for thePk are directly obtained by integratin
the gk(e) according to Eq.~6!. The result is

dPk~ t !

dt
5~k11!@Pk11~ t !2Pk~ t !#1Pk21

1S E
0

`

deg0~e!e2be2P0D @dk,12dk,02kPk~ t !

1~k11!Pk11~ t !#, ~27!

with P2150. It is easy to check that the equilibrium sol
tions ~16! are indeed stationary solutions. As previously sa
for generalb, the equations for thePk do not generate a
hierarchy by themselves but depend on thegk(e) through the
distribution g0(e) in Eq. ~27!. Nevertheless, a remarkab
aspect is that they generate a well defined hierarchy aT
50, which coincides with the equations of the original B
model @25#. These are

dPk~ t !

dt
5~k11!@Pk11~ t !2Pk~ t !#1Pk21

2P0@dk,12dk,02kPk~ t !1~k11!Pk11~ t !#.

~28!

It is easy to understand why atT50 the dynamical equa
tions are independent of the density of statesg(e). The rea-
soning is as follows. ForT50, all moves of particles be
tween departure and arrival boxes with different energiesed
05612
,

and ea depend on the precise values of these energies
when the departure box contains a single particle and
arrival box is empty. But such a move does not lead to a
change in any of thePk , hence dynamical equations for th
Pk remain independent ofg(e). Obviously this does not hold
for other observables such as the energyE @i.e., the mean
value of e over the densityg0(e)# and higher moments o
gk(e).

This observation is crucial, since we look at the glas
behavior atT50. It turns out that the analysis of the dynam
cal equations for the DBG atT50 decomposes into two
parts. On one hand, the equations for thePk coincide with
those of the original nondisordered BG model, while on t
other hand, in order to analyze the behavior of the ene
one must analyze the behavior of the hierarchy of equati
for the gk(e), which is quite complicated. In the following
section we will see how the analysis of these equations
be done within the framework of a generalized adiabatic
proximation.

V. THE ADIABATIC APPROXIMATION

A. Standard adiabatic solution for the Pk

In this section we are interested in the solution of t
dynamical equations atT50. We already saw that the Eq
~28! for the Pk coincides with those of the original nondis
ordered BG model. Consequently, the same adiabatic
proximation used for thePk in the original BG model is still
valid for the DBG. Let us remind the main results@22,23#.
The key idea behind that approximation is that, whileP0
constitutes a slow mode, the otherPk with k.0 are fast
modes. Hence they can be considered as if they were
equilibrium at the hypersurface in phase spaceP0
5constant, this constant being given by the actual value
P0 at timet. In the original BG modelP052E, hence ther-
malization of the fast modesPk(k.0) occurs on the hyper
surface of constant energy. For the DBG model this is
true, the hypersurface where equilibration of fast modes
curs does not coincide with the constant energy hypersur
simply because the energy andP0 are different quantities.
Indeed, we will see later that their leading time behavior
different.

At T50 the equation forP0 @Eq. ~28! for k50# reads

]P0

]t
5P1~12P0!. ~29!

If local equilibrium is reached on the hypersurface of co
stantP0 we can relateP1 to P0 using Eqs.~17!. The simplest
way of dealing with Eq.~29! is to relate bothP1 and P0 to
the time-dependent fugacityz* writing down a dynamical
equation forz* . Using Eq.~17! this yields

]z*

]t
5

z* @exp~z* !21#

exp~z* !@exp~z* !2z* 21#
. ~30!

In the large time limit z* diverges and the leading
asymptotic behavior is given byz* . ln(t)1ln@ln(t)#. The oc-
5-6
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cupation probabilities are, then, given by the relations~17!
replacingz by the time-dependent fugacityz* , as long as
z* @1,

Pk.dk,0S 12
1

z*
D 1~12dk,0!

~z* !k21

k! exp~z* !
. ~31!

Hence, according to Eq.~22!, the inverse effective tem
perature is given by the relation

beff;~z* !(a12)/(a11);@ ln~ t !# (a12)/(a11) ~32!

and the effective temperature depends on the propertie
the disorder distributiong(e) in the limit e→0 through the
value of the exponenta. Clearly, when the density of level
decreases as we approache50, the relaxation turns out to b
slower; the limiting case being the original BG model f
which a→` and beff; ln(t). In the other limit a→21,
when disorder becomes unnormalized, the inverse effec
temperature diverges very fast. Already from Eq.~23! one
can anticipate that the same asymptotic behavior holds
the energy@see Eq.~44!#, hencea interpolates between fas
relaxation (a521) and very slow relaxation (a5`). A re-
laxation slower than logarithmic is not possible in the pres
model.

B. Generalized adiabatic solution for thegk„e…

The equations for thegk(e) at T50 are

]g0~e!

]t
5g1~e!F12E

e

`

de8g0~e8!G
2g0~e!E

e

`

de8g1~e8!, k50, ~33!

]g1~e!

]t
52g2~e!~12P0!2g1~e!F22E

e

`

de8g0~e8!G
1g0~e!E

e

`

de8g1~e8!, k51, ~34!

]gk~e!

]t
5~k11!gk11~e!~12P0!2gk~e!@11k~12P0!#

1gk21~e!, k.1. ~35!

To solve the dynamical equations for thegk(e) in the
adiabatic approximation we note that, contrarily to the glo
quantitiesPk , they cannot be equilibrated among all diffe
ent modes. The reason is that, due to the entropic chara
of the relaxation, very low energy modes are rarely involv
because the time needed to empty one further box incre
progressively as time goes by, hence they cannot be tho
as effectively thermalized. Note that in the original B
model all boxes have the same energy, hence there
unique class of modes. For the general disordered mode
expect the existence of a time dependent energy scalee*
separating the equilibrated and the nonequilibrated mo
05612
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The mechanism of relaxation is the one we reminded in
Introduction when speaking about the behavior of collect
modes. At zero temperature there is no thermal activa
and the equilibrated modes are in the sectore@e* while the
nonequilibrated modes are in the other sectore!e* . The
value of e* can be easily guessed. After quenching to ze
temperature the system starts to relax to its ground st
Because there is no thermal activation, relaxation is driv
by entropic barriers, i.e., flat directions in configuration
space through which the system diffuses. Entropic relaxa
is energy costless, so its rate is determined by the numbe
available configurations with energy smaller than or equa
the actual energy. A simple microcanonical argument giv
the relaxation rate goes as follows. Let us denote byM the
number of occupied boxes and byV(M ) the number of con-
figurations withM occupied boxes. The typical time to in
crease by unity the number of empty boxes is given by

t.
V~M !

V~M21!
. ~36!

For distinguishable particles we haveV(M ).MN. In the
largeN,M limit we get

t.S M

M21D N

.expS N

M D . ~37!

Using the relationP0512M /N and Eq.~36! we find

dP0

dt
52

DM

NDt
5

1

t
5expS 2

1

12P0
D , ~38!

where we have used the fact that at zero temperature
number of occupied boxes can only decrease by unity, t
DM521.

This yields the resultP0.121/$ ln(t)1ln@ln(t)#% in agree-
ment with the adiabatic approximation. Actually, from th
solution in Eq.~30! for z* and using the adiabatic relatio
~31!, we obtainP0.121/z* , which yields the same resul
The typical relaxation time~37! behaves, then, liket
.exp@1/(12P0)#.exp(z* ).

If the thresholde* plays the role of an energy barrier an
beff accounts for the effective thermal activation due to e
tropic effects, we obtain, for the typical relaxation tim
t.exp(beffe* ). This expression is only valid to the
leading order. As we will see below there are sublead
corrections to this expression arising for the fact that
relaxation time is better described by the expressiont
.exp(beffe* )/(beffe* ) @see Eq.~45!#. Hence, at a given time
scalet ~i.e., the time elapsed since the system was quench!
all modes wheret!t are equilibrated at zero temperatu
~which in this case is the temperature of the thermal ba!
and therefore frozen. Modes witht@t, although dynamically
evolving, are alsofrozen because the barriers~in this case
entropic barriers! are too high to allow for relaxation within
the time scalet.

Only those modes whose characteristic time ist;t are
relaxing at a given time scalet. We get for the time depen
5-7
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L. LEUZZI AND F. RITORT PHYSICAL REVIEW E65 056125
dent energy scalee* and the effective temperature the rel
tion e* ; ln(t)/beff and this yields the leading behavior

e* ;@ ln~ t !#21/(a11). ~39!

According to what has been said one can impose the
lowing ansatz solution for thegk(e). If gk

eq stands for the
equilibrium density atT50 @i.e., according to Eq.~16!, gk

eq

5g(e)dk,0# then we have

Dgk~e![gk~e!2gk
eq~e!5

DPk

e*
ĝkS e

e*
D , ~40!

where DPk[Pk2Pk
eq5Pk2dk,0 and ĝk(x) decays pretty

fast to zero forx.1. This expression tells us the following
Above e* the gk(e) have relaxed to their correspondin
equilibrium distributions at the temperature of the bath~in
this case the bath is at zero temperature!. On the other hand
in the sector of the energy spectrum wheree,e* , the den-
sities gk are still relaxing @specially in the regione/e*
;O(1)#. Since the relaxation is driven by the shift in time
the threshold energye* the proposed scaling solution ansa
seems quite reasonable. The prefactorDPk /e* is introduced
to fulfill condition ~6!. Furthermore, the condition
*0

`dxĝk(x)51 is imposed on the scaling functionĝk .
In Appendix B we show how this ansatz closes the se

equations~33! reproducing also the leading asymptotic b
havior for e* andz* , which turns out to be

e* .
1

@ ln~ t !#1/(a11)
, ~41!

z* .
1

~e* !11a
. ln~ t !. ~42!

For later use, we define the following function:

Gk~e![
Dgk~e!e*

DPk
5ĝkS e

e*
D , ~43!

which scales as function ofe/e* . The scaling relation~40!
yields the leading asymptotic behavior of all observables
ferent from the occupation probabilitiesPk . For instance, the
energy is given byE52*0

`de e g0(e); using the scaling re-
lation ~40! and the asymptotic expression~41! we get for the
leading term

E2EGS;2E
0

`

de@g0~e!2g~e!#e;~e* !a12

;
1

ln~ t !(a12)/(a11)
. ~44!

Note that the asymptotic scaling behavior of the energ
the same as for the effective temperatureTeff51/beff in
agreement with the quasiequilibrium hypothesis@see Eq.
~23!#. An important result is that the thresholde* decays
05612
l-

f
-

f-

is

slower to zero than the effective temperature. A case wh
this difference can be clearly appreciated corresponds to
case where the density of states vanishes exponentially
g(e);exp(2A/e). In this case,e* decays slower than loga
rithmically, namely, like 1/ln@ln(t)# ~see Appendix B for de-
tails!.

C. Relaxational spectrum in equilibrium

One of the crucial features behind the applicability of t
adiabatic approximation is that the long-time behavior
zero temperature finds its correspondence with the lo
temperature relaxational properties of the equilibrium sta

To analyze the spectrum of relaxation timesteq(e) in
equilibrium we expand up to first order in perturbatio
theory the dynamical equations for thegk(e) around their
equilibrium solutionsgk

eq(e). Using the expansiongk(e)
5gk

eq(e)1dgk(e) we get a set of equations for the variatio
dgk(e). These are shown in Appendix C.

A complete derivation of the relaxation timet(e) in equi-
librium is complicated. But it is easy to convince oneself th
the relaxation time is asymptotically~in the limit T→0)
strongly peaked around the threshold energye* . For e@e*
the relaxation time is small because the population of h
energy boxes in equilibrium is rather small. On the oth
hand, fore/e* !1 the relaxation is estimated to be finite an
independent ofT. This result is derived in the aforemen
tioned Appendix C where we show that the maximum rela
ation time occurs fore arounde* . Starting from Eqs.~C1!
for dg0(e) anddg1(e) and making use of the adiabatic An
satz~40!, we find, fore.e* ,

t~e* !;
ebe*

be*
, ~45!

where e* (T);T1/(21a), is the asymptotic temperature de
pendence of the threshold energy at low temperature. T
yields for the temperature dependence of the relaxation ti

t~T!;
eb(a11)/(a12)

b (a11)/(a12)
~46!

showing that there is an activated behavior as a function
the temperature but with a relaxation time that increa
slower than Arrhenius asT→0. Note that for the standard
BG model corresponding toa→` we obtain an Arrhenius
behavior and in the opposite limita→21 the relaxation
time does not diverge anymore.

VI. NUMERICAL RESULTS

In this section we numerically check the main results o
tained in the previous sections. In particular, we want
show the existence of the threshold energye* separating the
equilibrated modes from the nonequilibrated energy mod
We have compared three different models characterized
three different types of distributions~Fig. 3!. All three distri-
butions were chosen to satisfy the conditions
5-8
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E
0

`

de g~e!5E
0

`

de e g~e!51, ~47!

in such a way that the ground state has energyEGS521 in
the limit N→` for all three cases. The models are the f
lowing ones.

Case A. Nondisordered model with a gap@Fig. 3~a!#. This
is the original BG model whereg(e)5d(e21). This case
corresponds toa→`, thereforee* 51 and the threshold en
ergy is time independent. The energy is expected to de

FIG. 3. Probability distribution of the energy weights of th
boxes of the DBG model.~a! The standard backgammon model h
no disordered distribution, all boxes have the same weight.~b! The
probability distribution function of a DBG witha51, at very low
energy the density of boxes goes to zero.~c! A second DBG model
with a50. Here the probability of having boxes with energies
bitrarily close to zero is finite.
05612
-

ay

like E11;Teff;1/ln(t). As previously said in Sec. II, the
same behavior is expected for any disorder distributiong(e)
with a finite gap.

Case B. Disordered model without a gap but g(0)50 @Fig.
3~b!#. We have considered the distribution

g~e!5
p

2
e expS 2

p

4
e2D . ~48!

This case corresponds toa51. The energy thresholde*
scales like 1/Aln(t) and the effective temperature and th
energy scale likeE11;Teff;1/@ ln(t)#3/2.

Case C. Disordered model without a gap and g(0) fini
@Fig. 3~c!#. We have considered the distribution

g~e!5
2

p
expS 2

e2

p D . ~49!

This case corresponds toa50. The energy thresholde*
scales like 1/ln(t) and the effective temperature and the e
ergy scale likeE11;Teff;1/@ ln(t)#2.

In Fig. 4 we plot the decay of the energy for all thre
models. Simulations were done forN5104,105,106 boxes
~the number of particles is identical to the number of box!
showing that finite-size effects are not big in the asympto
regime. We show data for one sample andN5106. We plot
the energy as a function of time starting from a random i
tial condition @particles randomly distributed among boxe
E(t50)521/e#. As clearly seen from the figure, relaxatio
is faster for the case C and slower for the standard BG mo
~case A!.

The different asymptotic behaviors are shown in Fig.
There we plot@E(t)2EGS#@ ln(t)#l with l[(a12)/(a11).
To avoid finite-size corrections when the energy is clo
to its ground state we computed exactlyEGS

5(1/N)(2( r 51
N e r1emin) whereemin is the minimum value

-

FIG. 4. Energy as a function of time for the three models d
cussed in the text. The energy was computed averaging over
intervalsDt52k, k being an integer. The lower curve represen
the relaxation in thea50 DBG model~case C!, the middle curve
the a51 DBG model~case B!, and the upper curve the standa
BG model~case A!.
5-9
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among thee8s. The different curves saturate at a finite qua
tity corresponding to the asymptotic leading constant. N
that the convergence is slow, showing the presence of
leading logarithmic corrections to the leading behavior.

Let us now analyze the shape of the probability densi
gk(e). For this distribution we also only show results forN
5106 because a smaller number of boxes results in hig
noise in the curves. The distribution probabilities were n
merically computed by binning thee axis from e50 up to
e5emax whereemax is the maximum value ofe r among all
theN boxes. One hundred bins are enough to see the be
ior of the time evolution of the different distributions. I
Figs. 6 and 7 we show theg0(e) for cases B and C, respec
tively. Note that theg0(e) converge to the asymptotic resu
g(e) for e.e* in agreement with the adiabatic solution~40!
while they are clearly different fore,e* . The value ofe*
whereg0(e) deviates from the asymptotic curveg(e) shifts
slowly to zero@like 1/„ln(t)…1/2 or 1/ln(t) for cases B and C
respectively#, as can be seen in Figs. 6 and 7.

FIG. 5. (E2EGS)@ ln(t)#l plotted as function of time withl
5(a12)/(a11) for the three different models discussed in t
text. The upper curve refers to case C, the middle one to case B
the lower one to standard BG model~case A!.

FIG. 6. Distributiong0(e) for case B for different times 2k with
k54,6,8,10,12,14,16,18,20~from bottom to top!. The continuous
line is g(e) given in Eq.~48!.
05612
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We do not show results for the othergk ~for instance,g1)
because they decay very fast to zero~already fort5217 there
are no occupied boxes with more than one particle!. Instead,
in Figs. 8 and 9 we verify the adiabatic ansatz, Eqs.~40! and
~43!, for the densitiesg0 andg1 in the two models B and C
Figure 8 plotsG0(e) for both models. Figure 9 plotsG1(e)
for both models. We have used the relation~39! together with
z* 5 ln(t)1ln@ln(t)# yielding

G0~e!5
Dg0~e!$ ln~ t !1 ln@ ln~ t !#%

ln~ t !1/(a11)
5ĝ0S e

e*
D , ~50!

G1~e!5
Dg1~e!t

ln~ t !a/(a11)
5ĝ1S e

e*
D . ~51!

Note that the scaling is pretty well satisfied and that
ĝk(x) indeed vanishes forx.1 yielding an estimate fore* is
both cases. We find,e* .6/Aln(t) for case B ande*

nd

FIG. 7. Distributiong0(e) for case C for different times 2k with
k54,6,8,10,12,14,16,18,20~from bottom to top!. The continuous
line is g(e) given in Eq.~49!.

FIG. 8. DistributionG0(e) as a function ofeAln(t) for case B
~distribution with a maximum! and as a function ofe ln(t) for case
C ~monotonically decreasing distribution!. Times aret52k with k
56,8,10,12,14,16.
5-10
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DISORDERED BACKGAMMON MODEL PHYSICAL REVIEW E65 056125
.12/ln(t) for case C. Note also that the quality of the co
lapse of theG0 is slightly worse for case B than for case C
We think that this is due to the stronger subleading corr
tions to the shift ofe* , which decays slower to zero for cas
B. Hence the asymptotic regime is reached only for la
times. Indeed, as Fig. 6 shows, the value ofe* obtained
within our time scales has not yet reached the maximum
the distribution g(e), so that we are still far from the
asymptotic behaviorg(e* );e* . Yet, it is remarkable how
well the scaling ansatz Eqs.~40! and ~43! fits the numerical
data.

VII. A METHOD TO DETERMINE THE THRESHOLD
ENERGY SCALE e*

In this section we are interested in the following questio
Is there a general method to determine the energy scalee*
without having any precise information about the adiaba
modes present in the system? In the previous sections
addressed this question by proposing an adiabatic sca
ansatz to the dynamical equations. Here we propose a
eral method to determine the energy scalee* from first prin-
ciples without the necessity of knowing the nature of t
slow modes present in the system. Obviously for mod
such as the standard BG model this energy scale has no
since we know from the beginning that the relaxation ta
place on a single energy scale.

Consider the following quantityP(DE) defined as the
normalized probability density of having a first accepted
ergy changeDE at time t. Let us consider the case of ze
temperature where this probability density is defined only
DE<0. If Q(DE) denotes the probability of proposing a
energy change at timet ~the move is not necessarily ac
cepted!, it is easy to show thatP andQ are proportional to
each other,

P~DE!5
Q~DE!

A
u~2DE!, ~52!

FIG. 9. DistributionG1(e) as a function ofeAln(t) for case B
~distribution with a maximum! and as a function ofe ln(t) for case
C ~monotonically decreasing distribution!. Times aret52k with k
56,8,10,12,14.
05612
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whereA5*2`
0 Q(DE)dDE is the acceptance rate. The e

pression forQ(DE) @and thereforeP(DE)# can be exactly
computed. Note that computingQ(DE) yields all informa-
tion about the statistics of energy changes, in particular
evolution equation for the energy.1 On the contrary, given the
time evolution for the energy this does not necessarily yi
the distributionQ(DE). For the DBG this function can be
exactly derived~its derivation is shown in Appendix D!.
Here we quote the result,

P~DE!5

E
0

`

de g0~e!g1~e2DE!1~12P0!g1~2DE!

A

3u~2DE!, ~53!

with

A5E
0

`

de8E
e8

`

de g0~e8!g1~e!1~12P0!P1 . ~54!

Using the scaling ansatz Eq.~40! we obtain the simple
scaling scaling relation,

P~DE!5
1

e*
P̂S DE

e*
D . ~55!

A collapse of differentP(DE) for different times can be
used to determine the time evolution ofe* . In Fig. 10 we
show the scaling ofP(DE) for the model B forN5104 and
different timest5102,103,104,105. Starting from a random
initial configuration, statistics has been collected over
proximately 30 000 jumps for every time. In Fig. 11 w
check the scaling relation~55! plotting P(DE)e* as a func-
tion of DE/e* where we have takene* ;1/Aln(t). Note also

1Actually, in equilibrium at finite temperatureQ(DE) satisfies
detailed balanceQ(DE)5Q(2DE)exp(2bDE).

FIG. 10. P(DE) versus DE for different times t
5102,103,104,105 ~from top to bottom! computed as explained in
the text.
5-11
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L. LEUZZI AND F. RITORT PHYSICAL REVIEW E65 056125
that the range whereP(DE) is finite corresponds to the re
gion where e;e* . In Fig. 11 this corresponds toe*
.6/Aln(t) in agreement with what was observed in Figs
and 9.

The scaling works pretty well showing how this meth
could be used to guess the time evolution of the ene
thresholde* in general glassy models in those cases wh
there exists an energy threshold.

VIII. CONCLUSIONS

In this paper we have considered a solvable glass mo
the DBG. The new ingredient of this model is that each b
has a positive random energy associated with it, which
obtained from a distributiong(e). Again, similarly to its pre-
decessor~BG!, the model displays slow relaxation due to t
presence of entropic barriers. Actually, it turns out that
relaxation atT50 of the number of empty boxes and a
other occupation probabilitiesPk is exactly the same as th
original BG model, and, in particular, independent of t
disorder distributiong(e). In general, the relaxation of othe
quantities such as the energy and other disorder depen
observables, displays an asymptotic relaxation that depe
on the statistical properties ofg(e) in the limit e→0. In the
asymptotic long-time regime, relaxation takes place by d
fusing particles among boxes with the smallest values oe.
Therefore the asymptotic decay of the energy, as well as
of other observables, only depends on the exponenta that
describes the limiting behaviorg(e)→ea. The original BG
model is recovered as a special case in the limita→`.

We have written the integral equations for the densit
gk(e). These equations form a hierarchy of dynamical eq
tions which can be closed by introducing a suitable gene
ing function. We focused on the solution of this hierarchy
the particular case of zero temperature. In this case the
lytical solution of these equations proceeds in two ste
First, the equations for the occupanciesPk are exactly the
same as in the original BG model and they can be solved
using known analytical methods. Second, this information
used to guess an adiabatic solution for thegk(e) in terms of

FIG. 11. Scaling plot forP(DE)/Aln(t) versusDEAln(t) for
different timest5102,103,104,105.
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a time-dependent energy thresholde* .
All densities are out of equilibrium but admit a scalin

solution of the typeĝk(e/e* ), with the condition that, fore

.e* , ĝk decays to zero fast enough to guarantee t

*0
`dxĝk(x)51. That means that for energies above t

threshold the modes are almost completely thermalized.
This ansatz solution yields two types of leading beha

iors: on one hand, they yield the asymptotic long-time b
havior ofe* ,z* at zero temperature, while on the other ha
they produce the low-temperature behavior of the values
e* ,z* in the stationary equilibrium limitt→`. The adiabatic
approximation is nothing else but stating the validity of t
complementary description of these two very different
gimes. On one hand is the equilibrium regime, where first
limit t→` is taken and laterT→0, while on the other hand
is the far from equilibrium regime, where the limitT→0 is
taken first and latert→`. The commutation of these two
limits allows for the interchange between different variab
such as energy, temperature, and times when expresse
terms of their asymptotic leading behavior. Knowing t
leading behavior of the quantitiesz* and e* , dimensional
reasoning as presented in Appendix B yields the leading
havior of beff , which turns out to be proportional toz* /e* .
The DBG model offers a scenario where there are two
ergy sectors separated by the energy scalee* , which have
very different physical properties. These two sectors ma
fest in the behavior of observables such as the probab
densitiesgk(e) where the time dependent thresholde* sepa-
rates the equilibrated modes (e.e* ) from the modes that
stay off equilibrium (e,e* ). In the off-equilibrium regime,
entropic barriers are typically higher than the time-depend
barrier at the threshold levele* . For e.e* barriers are
lower and equilibrium is achieved faster.

IX. DISCUSSION

How is the existence of this energy scale of interest? O
of the most interesting properties of the present model is
it introduces, in a very simple way, the concept of a thresh
energy scale. To our knowledge, such concept has never
discussed in any one among the plethora of mean-field gla
models studied during recent years. In those cases, one
ies the relaxation of global quantities that get contribution
all possible energy scales involved into the problem. In pr
ciple, nothing is wrong with that since the macroscopic o
servables are those quantities that are always measured i
laboratory. The problem arises when tackling issues rela
to the violation of the fluctuation-dissipation theorem a
concepts such as the effective temperature and partial eq
bration. Usually an effective temperature is defined in ter
of the measured dissipation~response! and fluctuations~cor-
relations! in the aging regime. This effective temperature
supposed to quantify the amount of energy transfer when
system is put in contact with a thermal bath and behave
several aspects as a real temperature@14,16,34#. There is a
fundamental problem with this definition, which is the fo
lowing. Suppose one takes a piece of silica well belowTg
5-12
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~for instance, at room temperature!. The piece of silica is not
in equilibrium ~actually, it is always relaxing even if th
relaxation rate is extremely small and unobservable at ro
temperature! so one would be tempted to claim that its e
fective temperature~that describing the equipartition amon
the set of nonthermalized degrees of freedom! is aroundTg
well above the room temperature. Obviously, if we touch
piece of silica, then the hand plays the role of a thermal b
at the room temperature. Therefore, why we do not feel
effective temperature that may be hundreds of degrees a
the room temperature? Note that the energy content of
glass is still very large. Indeed, if the glass suddenly crys
lized it would liberate all its latent heat@33#. There are two
possible explanations of discrepancy. The first one was a
lyzed in the context of the oscillator model and assumes
the thermal conductivity is so small that the heat transfe
negligible over such a short time scale@34#. The other expla-
nation is that, when touching the glass, we are not touch
the slow collective degrees of freedom that still contain a
of energy but the thermalized degrees of freedom. These
explanations are not totally exclusive. Assuming the ex
tence of an energy thresholde* such that, abovee* , all
collective modes are thermalized at the bath temperature
below that threshold they are off equilibrium, this offers
explanation about why when touching a piece of glass
feel it at the room temperature. Our hand only couples to
higher energy degrees of freedom~phonons! and not to the
~much hotter! collective excitations. Yet, we cannot exclud
that even if we coupled the bath to the hottest collect
degrees of freedom then the conductivity would be
tremely small and no heat transfer would be measured. F
a different point of view, the two different explanations f
the small amount of heat transfer established between a
and the ‘‘hot’’ glassy system reduce to a single one: the
istence of a threshold scalee* is a consequence of the high
different orders of magnitude for the conductivities in t
two energy sectors. Future studies of other glassy mo
will better clarify this issue@35#.

Finally, we have proposed a method to determine
threshold energy scalee* by computing the general prob
ability distribution Q(DE). Preliminary investigations in
other glassy models show that this distribution provide
general way to determine the threshold scalee* . Moreover,
it gives interesting information about fluctuations in the a
ing state although future work is still needed to understa
better its full implications in our understanding of the agi
regime.

Further investigations in this model will address other
sues such as the measurement of effective temperatures
instance, it would be interesting to understand how the ef
tive temperature, defined as the temperature of the the
bath, which does not produce a net thermal current when
in contact with the system, depends on the energy secte
probed by the bath. By coupling the bath with a selected
of modes of energye we can understand whether there is
single effective temperatureTeff for all modes or rather, there
is an e dependent temperature. Note that the local equi
rium in this model is only valid in the energy sectore.e*
and it could well be that there does not exist a well defin
05612
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effective temperature in the other sectore,e* . Neverthe-
less, the most natural possibility is that the thermal fluct
tions in the off-equilibrium sectore,e* are determined by
the effective temperature@see Eq.~32!# that determines the
relaxation rate of the slow collective modeP0. Future studies
should enlighten this and other related questions.

ACKNOWLEDGMENTS

We acknowledge A. Garriga and Th. M. Nieuwenhuiz
for a careful reading of the manuscript and suggestions. L
is supported by FOM, The Netherlands. He acknowled
financial support from LPTHE where part of this work wa
done. F.R. is supported by the Spanish Ministerio de Cien
y Tecnologı´a, project PB97-0971. F.R. acknowledges supp
from the French-Spanish Collaboration~Picasso program
and Acciones Integradas HF2000-0097!.

APPENDIX A: OCCUPATION PROBABILITY DENSITY
EQUATIONS

In this appendix we derive the equations of motion for t
occupation probability densities for box energy betweene
and e1de. First we start from the densities of having ze
particle in a box of energye.

In Table I we list the processes contributing to the evo
tion of the occupation probability density of boxes conta
ing zero particles. In the left column, we show the proces
involved in terms of occupation numbers of the depart
box and of the arrival box. In the right column, we write th
correspondent contribution of a given process to the va
tion of the occupation density,Dg0(e).

The particle for which a jump is proposed is chosen
box d with probabilitynd /N. The arrival box is chosen with
uniform probability 1/N.

The total difference per particle in the probability dens
of empty boxes of energye is then

Dg0~e!5
1

N (
p50

N

(
a50

N
np

N

1

N
$dnd,1dna,0@d~e2ed!2d~e2ea!#

3@11~e2b(ea2ed)21!u~ea2ed!# ~A1!

1dnd,1~12dna,0!d~e2ed!2~12dnd,1!

3dna,0e
2bead~e2ea!%. ~A2!

Using Eqs.~3!–~6! and the following identities:

TABLE I. Processes involved in the dynamics of the probabil
densityg0(e) of empty boxes at energye.

Occupation Contribution toDg0(e)

nd51 na50 dnd,1dna,0@d(e2ed)2d(e2ea)#

3@11(e2b(ea2ed)21)u(ea2ed)#

na.0 dnd,1(12dna,0)d(e2ed)
nd.1 na50 2(12dnd,1)dna,0e

2bead(e2ea)
5-13
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1

N (
a50

N

dna,0u~ea2e!@e2b(ea2e)21#

5E
e

`

de8 g0~e8!@e2b(e82e)21#, ~A3!

1

N (
d50

N

nddnd,1u~e2ed!@e2b(e2ed)21#

5E
0

e

de8 g1~e8!@e2b(e2e8)21#, ~A4!

1

N (
a50

N

dna,0d~e2ea!e2bea5g0~e!e2be, ~A5!

we get the equation of motion forg0(e) @namely, Eq.~24!#,

]g0~e!

]t
5 lim

N→`

Dg0~e!

1/N

5g1~e!F11E
e

`

de8g0~e8!~e2b(e82e)21!G
2g0~e!Fe2be1P1~12e2be!

1E
0

e

de8g1~e8!~e2b(e2e8)21!G .
We then consider the evolution of the probability dens

for boxes containing one particle. In Table II we list th
processes contributing to the evolution of such occupa
probability density.

Departure boxes are chosen with probabilitynd /N. Ar-
rival boxes are chosen with uniform probability 1/N.

Using again Eqs.~3!–~6! and Eqs.~A3!,~A5! we are able
to derive the equation of motion for the probability dens
of boxes with one particles and energy equal toe,

TABLE II. Processes contributing to the dynamics ofg1(e).

Occupation Contribution toDg1(e)

nd51 na50 dnd,1dna,0@d(e2ed)2d(e2ea)#

3@11(e2b(ea2ed)21)u(ea2ed)#

na51 2dnd,1dna,1@d(e2ed)1d(e2ea)#

na.1 2dnd,1(12dna,12dna,0)d(e2ed)
nd52 na50 dnd,2dna,0@d(e2ed)1d(e2ea)#e2bea

na51 dnd,2dna,1@d(e2ed)2d(e2ea)#

na.1 dnd,2(12dna,12dna,0)d(e2ed)
nd.2 na50 (12dnd,22dnd,1)dna,0d(e2ea)e2bea

na51 2(12dnd,22dnd,1)dna,1d(e2ea)
05612
n

]g1~e!

]t
52g2~e!S 11E

0

`

deg0~e!e2be2P0D
2g1~e!F21E

e

`

de8g0~e8!~e2b(e82e)21!G
1g0~e!Fe2be1P1~12e2be!

1E
0

e

de8g1~e8!~e2b(e2e8)21!G .
For densities of boxes withk.1 particle the scheme o

the contributions is presented in Table III.
Combining all the contributions we obtain forgk(e) Eq.

~26!

]gk~e!

]t
5~k11!gk11~e!S 11E

0

`

deg0~e!e2be2P0D
2gk~e!F11k1kS E

0

`

deg0~e!e2be2P0D G
1gk21~e!.

APPENDIX B: ANSATZ FOR THE ADIABATIC
APPROXIMATION

In this appendix we show that the ansatz solution~40! is
asymptotically a solution of Eqs.~33!–~35! at T50 yielding
the leading behaviore* ~41!. We start by rewriting Eq.~40!
in the following way:

Dgk~e!5
DPk

e
hkS e

e*
D , ~B1!

where DPk[Pk2dk,0 , Dgk(e)[gk(e)2dk,0g(e), hk(x)
5xĝk(x), and*0

`dx ĝk(x)5*0
`dx hk(x)/x51. Here we will

TABLE III. List of the processes involved in the dynamics o
the probability densitygk(e), for k.1.

Occupation Contribution toDgk(e)

nd5h,k na5k21 dnd ,hdna ,k21d(e2ea)
na5k 2dnd ,hdna ,kd(e2ea)

nd5k na50 2dnd ,kdna,0d(e2ea)e2bea

0,na5h,k21 2dnd ,kdna ,hd(e2ea)
na5k21 2dnd ,kdna ,k21@d(e2ed)2d(e2ea)#

na5k 2dnd ,kdna ,k@d(e2ed)1d(e2ea)#

na.k 2dnd ,k(12(h50
k dna ,h)d(e2ed)

nd5k11 na50 2dnd ,k11dna,0d(e2ed)e2bea

0,na,k21 dnd ,k11dna ,hd(e2ed)
na5k21 dnd ,k11dna ,k21@d(e2ed)1d(e2ea)#

na5k dnd ,k11dna ,k@d(e2ed)2d(e2ea)#

na.k dnd ,k11(12(h50
k dna ,h)d(e2ed)

nd.k na5k21 (12(h51
k11dnd ,h)dna ,k21d(e2ea)

na5k 2(12(h51
k11dnd ,h)dna ,kyd(e2ea)
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perform the analysis for the casek50. The equations fork
.0 can be obtained in a similar fashion. Substituting t
expression into Eq.~33! we get

]g0~e!

]t
5

]DP0

]t

1

e
h0S e

e*
D 2

DP0

~e* !2
h08S e

e*
D de* ~ t !

dt

52
DP1

e
h1S e

e*
D F E

0

e

de8g~e8!

2DP0E
e

`

de8
1

e8
h0S e

e*
D G

1DP1Fg~e!1
DP0

e
h0S e

e*
D

3E
e

`

de8
1

e8
h1S e

e*
D G , ~B2!

whereh08(x) stands for the first derivative ofh0(x). Note that
the scaling functionh0 does not depend on time, hence the
is no term]h0 /]t in that expression. Now introduce Eq.~29!
in the first term on the left-hand side of Eq.~B2! and multi-
ply the whole equation bye/DP0 to obtain

DP1 h0~x!1x h08~x!
] ln~e* !

]t

5DP1 h1~x!F 1

DP0
E

0

e

de8g~e8!2E
x

`

dx8ĝ0~x!G
2Fe g~e!

DP0
1h0~x!GDP1E

x

`

dx8ĝ1~x!, ~B3!

where ĝk(x)5@hk(x)/x#. From this equation we can gues
the scaling behavior of all quantities in the asymptotic lar
time limit e* →0. In the sectore<e* we useg(e);ea ob-
taining *0

ede8g(e8);ea11. Assuming all terms of the sam
order, we get fore;e* ,

DP0;~e* !a11, ~B4!

DP1;2
] ln~e* !

]t
. ~B5!

Using the standard adiabatic results~31!, P051
21/z* ,P151/@exp(z* )# we obtain the results~41! and ~42!.
Note that the set of equations forhk are still impossible to
solve. Only in certain regimes such ase!e* it may be pos-
sible to obtain results. There is a set of equations wh
couples the differenthk . But this set of equations is tim
05612
s

-

h

independent and should yield all the scaling functionsĝk(x)
once appropriate treatment is done of the amplitude cons
which fixes the leading behavior ofe* .

We also consider, as an example, the case in which
probability distribution of the quenched disorder becom
exponentially high at high values ofe and zero for low val-
ues, namely, we choose

g~e!5expS 2
A

e D . ~B6!

For this choice *0
ede8g(e8);2e exp(2A/e)2AG(0,A/e),

where the generalized Euler functionG(0,x) goes to zero as
x→`. In order to estimatee* from Eq. ~B3! we notice now
that for P1 Eq. ~B5! is still valid, while for DP0 we obtain

DP0;2e* expS 2
A

e*
D , ~B7!

eventually yielding

e* ~ t !;
A

ln@ ln~ t !#
. ~B8!

APPENDIX C: APPROACH TO EQUILIBRIUM OF THE
OCCUPATION DENSITIES gk„e…

We present the equations of motions for the occupat
densities in the asymptotic regime. The values of the de
ties are expanded to first order around their equilibrium v
ues:gk5gk

eq1dgk ,

]dg0~e!

]t
5dg1~e!H 11E

e

`

de8g0
eq~e8!@e2b(e82e)21#J

2dg0~e!Fe2be1P1
eq~12e2be!

1zE
0

e

de8g0
eq~e8!~e2be2e2be8)!G1g0

eq~e!

3H zE
e

`

de8dg0~e8!~e2be82e2be!

2~12e2be!E
0

`

de8dg1~e8!

2E
0

e

de8dg1~e8!@e2b(e2e8)21#J , k50,

~C1!
5-15
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TABLE IV. Contributions to the probability distributionQ(DE) of proposed energy updates.

Occupation Contribution toE82E Probability

nd51 na50 2ed1ea g1(ed)g0(ea)
na.0 2ed g1(ed)@g(ea)2g0(ea)#

nd.1 na50 ea g0(ea)
1
N

(pnp@g(ed)2g1(ed)#

na.0 0
@g(ea)2g0(ea)#

1
N

(pnp@g(ed)2g1(ed)#
a-

to

the

ture
-

re-

se

d
he
es.

om-

.

]dg1~e!

]t
5

2

z
dg2~e!2dg1~e!F21E

e

`

de8g0~e8!@e2b(e82e)

21#G1dg0~e!Fe2be1P1
eq~12e2be!

1zE
0

e

de8g0~e8!~e2be2e2be!G2g0
eq~e!

3H z2e2beE
0

`

de8dg0~e8!~12e2be8!

1zE
e

`

de8dg0~e8!~e2be82e2be!

2~12e2be!E
0

`

de8dg1~e8!2E
0

e

de8dg1~e8!

3@e2b(e2e8)21#J , k51, ~C2!

]dgk~e!

]t
5dgk11~e!

k11

z
2dgk~e!S 11

k

zD1dgk21~e!

2g0
eq~e!

zk11

k!
e2beS 12

k

zD E0

`

de8dg0~e8!

3~12e2be!, k.1. ~C3!

In the above equationsb is the inverse thermal bath temper
ture andz is the equilibrium fugacity at that temperature.

As T goes to zero@b→`, z(b)→`# the equations for
the first order perturbation to equilibrium can be closed,

]dg0~e!

]t
5dg1~e!2E

e

`

de8@dg1~e!g~e8!

1g~e!dg1~e8!#, k50, ~C4!

]dg1~e!

]t
522dg1~e!1E

e

`

de8@dg1~e!g~e8!

1g~e!dg1~e8!#, k51, ~C5!

]dgk~e!

]t
52dgk~e!1dgk21~e!, k.1. ~C6!
05612
In order to estimate the relaxation characteristic time
equilibrium at low temperature we can expand Eqs.~C1!.
First we introduce the asymptotic threshold energye* (T) as
the energy discriminating between the thermalized and
nonthermalized collective modes at temperatureT. If we de-
fine it through the relatione* (T)5Tz(T) and use the rela-
tion ~22! obtained by doing a low-T expansion then we get

e* ~T!5z0T1/(21a), ~C7!

wherez0 is the coefficient of the leading term ofz(T) at low
T @see Eq.~22!, z(T)5z0T(11a)/(21a)#.

Then we expand Eqs.~C1!, takee.e* , and introduce the
following adiabatic ansatz:

dgk~e![gk~e!2gk
eq~e!5

DPk~T,t !

e* ~T!
ĝkS e

e* ~T!
D . ~C8!

Note that this solution is equivalent to the ansatz Eq.~40!
introduced for the asymptotic dynamics at zero tempera
but with a statice* (T) now replacing the dynamical thresh
old. Now consider Eq.~C1! for dg0(e). BecausedPk
5*dedgk(e) it can be shown that the slowest mode cor
sponds tok50, i.e.,dg0(e)@dgk(e) for k.0. Therefore the
second term in the right-hand side of Eq.~C1! dominates the
first and the second terms. Introducing Eq.~C8! into Eq.~C1!
we get that the relaxation time behaves like

teq~e* !}
ebe*

be*
. ~C9!

For e@e* the relaxation time is much smaller, since tho
are the modes with lower energy barriers.

APPENDIX D: PROBABILITY DISTRIBUTION
OF PROPOSED ENERGY UPDATES

In this appendix the probability distribution of propose
energy updates is built. In Table IV we summarize all t
processes contributing to it, together with their probabiliti

The probability distributionQ(DE) of proposed energy
updates is the average of all possible changes, each c
puted with its probability,

Q~DE![d~E82E2DE!, ~D1!

where DE is the proposed update,E is the energy of the
system before the updating, andE8 the energy afterwards
This means
5-16
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Q~DE!5E
0

`

deE
0

`

de8g1~e!g0~e8!d~D1e2e8!1E
0

`

deE
0

`

de8g1~e!@g~e8!2g0~e8!#d~DE1e!

1E
0

`

deE
0

`

de8g0~e8!
1

N (
p

np@g~e!2g1~e!#d~D2e8!1E
0

`

deE
0

`

de8@g~e8!2g0~e8!#
1

N

3(
p

np@g~e!2g1~e!#d~DE!

5E
DE

`

deg0~e!g1~e2DE!1~12P0!g1~2DE!u~2DE!2~12P1!g0~DE!u~DE!

1~12P0!~12P1!d~DE!. ~D2!
e
ak
or

s

te

lu-

ob-
In-
The term withd(DE) is the term responsible for diffusiv
motion of the particles. Such a term does not actually m
any contribution to the relaxation of the system and theref
we will not consider it from now on.

The probability distribution of accepted energy change
given by

P~DE!5
Q~DE!W~bDE!

A
, ~D3!

whereW(bDE) is the Metropolis function

W~bx!5H e2bx if x.0,

1 if x<0.
~D4!

The normalization factor is

A5E
0

`

de8E
e8

`

de@e2b(e2e8)g0~e!g1~e8!1g0~e8!g1~e!#

1~12P0!P11~12P1!E
0

`

deg0~e!e2be. ~D5!

As T→0 the distributionP becomes

P~DE!5u~2DE!

3

E
0

`

deg0~e!g1~e2DE!1~12P0!g1~2DE!

A
,

~D6!
d

rd

1

05612
e
e

is

with A5*0
`de8*e8

` deg0(e8)g1(e)1(12P0)P1.
The normalization factorA is actually the acceptance ra

of the Monte Carlo dynamics

A5E
2`

`

dx W~bx!Q~x! ~D7!

as it was defined in Ref.@7#.
Using the same notation we can write the energy evo

tion as

]E

]t
5E

2`

`

dx x W~bx!Q~x!

52P1E2E
0

`

de g1~e!e1E
0

`

de8E
e8

`

de g1~e8!g0~e!

3@e2b(e2e8)21#~e2e8!

1~12P1!E
0

`

de g0~e!e2bee. ~D8!

The right-hand side of this equation can be equivalently
tained following the procedure presented in Appendix A.
deed, by definition of energy density,

]E

]t
52E

0

`

de e
]g0~e!

]t
. ~D9!

Inserting Eq.~24! in Eq. ~D9! we get Eq.~D8! back.
.
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